Skip to main content

Table 6 Applied models for predicting permeability of mixed matrix membranes containing non-porous silica

From: Silica applied as mixed matrix membrane inorganic filler for gas separation: a review

Type of polymer

Applied model

Goal

Ref

Polyurethane

Bruggeman model

\( {\left(\frac{P_{ps}}{P_l}\right)}^{2/3}=\left(1-{\varphi}_s\right) \)

Evaluate the permeability of the gas between the polymer and the void space of the nanocomposite.

[53]

Modified Knudsen model

\( P=D\times S=9.7\times {10}^{-5}\times \frac{r_d+{l}_i}{RT}\sqrt{\frac{T}{M_A}}\times \)

Calculate permeability of gas within the void region

Modified Maxwell model

\( {P}_M={P}_C\left[\frac{P_d+2{P}_C-2\left(\frac{\varnothing_D}{\varnothing_S}\right)\left({P}_C-{P}_d\right)}{P_d+2{P}_C+\left(\frac{\varnothing_D}{\varnothing_S}\right)\left({P}_C-{P}_d\right)}\right] \)

Evaluate the total gas permeability

Polyurethane

Modified Maxwell model

\( P= DS=\frac{D_A}{\gamma }{\left(1+\frac{\varphi_f}{2}\right)}^{-1}\left[{S}_A\left(1-{\varphi}_f\right)+{S}_f{\varphi}_f\right] \)

Calculate gas permeability of composite membrane

[59]

Higuchi model

\( P={P}_A\left(1-\frac{6{\varphi}_f}{4+2{\varphi}_f-{K}_H\left(1-{\varphi}_f\right)}\right) \)

Predict the gas permeability of hybrid membranes in the presence of impermeable and spherical fillers like silica particles.

Polyetherurethane, polyesterurethane

Bruggeman model

\( {\left(\frac{P_{ps}}{P_l}\right)}^{2/3}=\left(1-{\varphi}_s\right) \)

Evaluate the permeability of the gas between the polymer and the void space of the nanocomposite.

[44]

Modified Knudsen model

\( P=D\times S=9.7\times {10}^{-5}\times \frac{r_d+{l}_i}{RT}\sqrt{\frac{T}{M_A}}\times \)

Calculate permeability of gas within the void region

Chiew and Glant model

\( \frac{P_M}{P_C}=1+3\beta {\varphi}_{ps}+K{\varphi}_{ps}^2 \)

Evaluate the total gas permeability

Glassy polymers

Maxwell model

\( {P}_i={P}_{i,P}\left(\frac{1-{\varnothing}_F}{1+0.5{\varnothing}_F}\right) \)

Estimate the permeability of a permeable medium filled with a low content of spherical, impermeable particles.

[64]

Free volume model

\( \frac{\alpha_{D,M}}{\alpha_{D,P}}=\mathit{\exp}\left[\left({B}_a-{B}_b\right)\left(\frac{1}{FFV_P^0}-\frac{1}{FFV_{P, MM}^0}\right)-{F}_a\left({FFV}_{P, MM}^0\bullet {\varOmega}_{aP, MM}-{FFV}_P^0\bullet {\varOmega}_{aP}\right)+{E}_a\left({\varOmega}_{aP, MM}-{\varOmega}_{aP}\right)\right] \)

Estimate the variation in diffusivity selectivity due to the addition of fumed silica

Poly ether block amide

Van Amerongen and Van Krevelen relations

\( {P}_n=\frac{D_0{S}_0}{{\left(\frac{E_n}{E}\right)}^K\left(1+0.5{\varnothing}_n\right)}{\left(\frac{1-{X}_{c,n}}{1-{X}_c}\right)}^2\left(1-\beta {\varnothing}_n\right)\mathit{\exp} \)

Estimate permeability of the penetrants through mixed matrix membranes

[65]