Skip to main content

Table 1 Isotherm and kinetic adsorption models

From: Facile synthesis of reduced graphene oxide by Tecoma stans extracts for efficient removal of Ni (II) from water: batch experiments and response surface methodology

Adsorption models

Nonlinear equation

Parameters

Isotherm

 Langmuir; Eq. (3)

\( {q}_e=\frac{q_m\ {K}_L\ {C}_e}{1+{K}_L\ {C}_e} \)

qe: the equilibrium loading of Ni (II) (mg g− 1), qm: the maximum loading of Ni (II) per g of adsorbent (mg g− 1), KL: constant of Langmuir equilibrium for the affinity between the adsorbent and Ni (II) (L mg− 1).

 Freundlich; Eq. (4)

\( {q}_e={K}_f\ {C}_e^n \)

Kf: constant of Freundluch for the adsorption strength ((mg g− 1) (mg L− 1)n), n: the adsorption intensity

 Temkin; Eq. (5)

qe = B ln(KT Ce)

B: the adsorption heat constant (J moL− 1); B= \( \frac{R_T\ }{b} \), R: gas constant (8.314 J mol− 1 K− 1), T: temperature (K), and KT: constant of Temkin binding (L mg− 1).

 Separation factor; Eq. (6)

\( SF=\frac{1}{1+{K}_L{C}_0} \)

SF: Separation factor (dimenstionless), C0: initial adsorbate concentration (mg L− 1).

Kinetic

 pseudo-first-order; Eq. (7)

qt = qe (1 − exp(−k1 t)

k1: PFO constant rate (min− 1), t: contact time (min).

 pseudo-second-order; Eq. (8)

\( {q}_t=\frac{q_e^2\ {k}_2\ t}{1+{k}_2{q}_e\ t} \)

k2: PSO constant rate (g mg− 1 min− 1).