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Abstract

Effective microbes (EM) are the coexisting naturally occurring useful microbes applied as inoculant to enhance the
beneficial microflora of the soil ecosystem to facilitate agricultural production. The participating microbial
consortium includes lactic acid and photosynthetic bacteria, actinomycetes, fermenting fungi, and yeast, among
others. These microbes are physiologically well-matched and coexist in a provided medium. EM formulation could
be applied to a target crop in the most appropriate manner and form, and is easy to handle. It could be applied in
several manners, as soil application, foliar application and as seed treatment. Microbial formulation in agricultural
practices for enhancing productivity is sustainable and eco-friendly approach. When applied, EM formulations
reportedly have positive effect on several crop growth parameters. It enhances the productivity, biomass
accumulation, photosynthetic efficiency, and antioxidative response to abiotic stress in rice. EM formulations
reportedly augment the trace elements contents, root and shoot weight, nodulation and pod yield in rajmah, while
it boosts the root and shoot weight, nodulation and seed yields in bean, and drought and virus tolerance, shoot
weight, pod number and biomass in soybean. Reportedly, formulated EM perks up the chlorophyll, N, P,
carbohydrate and protein contents in sunflower, whereas it stimulates the root and shoot growth, leaf number,
fungal disease resistance in groundnut. It could lead to an improved root growth, plant height, chlorophyll content,
pod yield, fungal disease resistance, Cr-resistance and pest resistance in okra. This review compiles and provides
critical insight to the effects of EM formulations on various crops, particularly the cereals (rice), pulses (rajmah, bean
and soybean), oilseeds (sunflower and groundnut) and vegetable (okra).

Keywords: Agriculture, Effective microbe, EM formulation, Environmental probiotics, Microbe-microbe interaction,
Plant-microbe interaction

Introduction
Healthy soil ecology entails the ability of soil to save the
flora against soil-borne pathogenic microbes and para-
sites. Soil ecosystem balances the relationship between
the pathogenic and numerous useful microbes working
together in synergy [1]. The obliging saprobic microflora
ferments and decomposes the soil organic material and
supplement to the nutrient pool for the plants, while
additionally augmenting the soil particles helping in its

moisture and nutrient holding capacities [1]. Applying
animal manures and liquid compost (composed of plant
growth constituents and useful microbes) to the soil is a
scientific approach towards sustainable farming. It could
be used to improve soil quality, promote plant growth
and protect the crops from pathogenies [2]. Although an
integral component of crop ecosystem, the active soil
microbes are little recognised in agricultural manage-
ment strategies, and their role needs to be augmented
further [3].
Continuous and indiscriminate use of chemicals poses

a negative impact on soil, environment, and ultimately
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human health, in the same sequence. Use of chemical
fertilisers indiscriminately leads to soil pollution grad-
ually deteriorating the soil fertility. Although productiv-
ity increased appreciably to feed the starving population
with the onset of green revolution (in early 70s), the use
of chemical fertilisers and pesticides glorified then had
an obvious long-term adverse effect [4]. Since then, the
synthetic chemicals have taken the front seat in current
global agriculture. Excess accumulation of such chemicals
in crops bioaccumulates and biomagnifies along the food
chain thereby adversely affecting human and animal
health. Chemical run-offs from agri-systems when flooded
further add to the awe. So, concerted scientific investiga-
tions to utilize agricultural resources efficiently and en-
hance productivity through biological means instead of
chemicals are underway. Applying organic practices along
with effective microbes (EMs) for yield enhancement on a
sustainable basis is a promising approach. Nutrients recyc-
ling becomes efficient through this by saprobes, and the
urgency for chemical fertiliser dwindles [4–6].
Using microbes solely or in a consortium could enhance

the productivity of most farming systems significantly as
the microbes and plants have been evolutionarily interact-
ing in nature [7, 8]. Among various microbial communities

active in agricultural faming systems, fungi, bacteria, actino-
mycetes and yeasts have been recommended as potential
EMs [1]. Applying composts and animal manure in an agri-
cultural system along with EMs (as EM formulations) to
the soil environment promotes plant growth. As the EMs
persist in the soil environment for a long time, their benefi-
cial effects in the growth and development of the crops is
manifested better [9, 10].
The sludge and organic wastes treated by the EMs

could be applied as biofertilizer, wherein the EM partici-
pants as well as the essential nutrients could be healthy
inputs for crop growth. The beneficial bacteria and fungi
present in the biofertilizers help improve chemical and
biological characteristics of the soil thereby ensuring
agricultural productivity [11, 12]. In biofertilizer, various
microbial communities, viz., fungi, bacteria, actinomy-
cetes and yeasts, are used as inoculant and they majorly
promote plant growth through activities like fixing N2,
phosphate and potassium solubilisation, exopolysacchar-
ides secretion, biocontrol agent, organic matter decom-
position, and siderophores production [3, 13]. The
various mechanisms of action performed by the EMs
promoting plant growth and development are graphic-
ally presented in Fig. 1. Diazotrophs like Rhizobium sp.

Fig. 1 The various mechanisms of action by EMs for plant growth and development
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and Bradyrhizobium sp. are the major N2-fixers [14].
Azospirillum, a free-living N2-fixer reportedly enhances
the growth in non-leguminous crops [15]. Pseudomonas
putida and Pseudomonas fluorescens are not only good
biocontrol agents but also stimulate crop growth
through biological N2-fixation and by enticing hormonal
secretion for plant growth [16]. Azotobacter and Azospir-
illum application as EMs reportedly enhance strawberry
production [17, 18]. Phosphorus, which is the key nutri-
ent in soil and is present in complex unavailable forms,
is made available for the plant through the activity of
phosphate solubilising microbes. Han and Lee [19] re-
ported the benefits of phosphate solubilising bacteria Ba-
cillus megaterium and potassium solubilising bacteria
Bacillus mucilaginosus in enhanced nutrient uptake by
eggplant in nutrient-limited soil. Coinoculating two or
more microbes might improve the yield and growth as
compared to a single one due to the added benefits of
their concerted efforts [19].
Photosynthetic and lactic acid bacteria, fermentative

fungi, actinomycetes and yeasts or their combinations
are a part of a formulated EM [20–22]. EMs as environ-
mental probiotics are added to the prebiotic that result
in formulated EM. In a formulated EM, the biotic (as en-
vironmental probiotic) and abiotic (as the prebiotic) are
two important ingredients, wherein the microbes act as
a probiotic and the carbon and other nutrient sources
act as prebiotics. Kato et al. [20] and Raja and Bharani
[22] collected beneficial microbes from nature and for-
mulated the EM using lactic acid bacteria (Lactobacillus
plantarum, Lactobacillus casei, Streptoccus lactis),
photosynthetic bacteria (Rhodopseudomonas palustris,
Rhodobacter sphaeroides), yeasts (Saccharomyces cerevi-
siae, Candida utilis), actinomycetes (Streptomyces albus,
S. griseus), and fungi (Aspergillus oryzae, Mucor hiema-
lis) [20, 22]. Formulated EM application along with or-
ganic fertiliser enhances the growth, nutrient uptake and
grain yield of sweet corn as compared to chemical fertili-
sers [20]. As wood waste residue provides a suitable en-
vironment for the EM to thrive, and a high quality
compost could be produced, EM formulation could be
used in industrial wood waste management [21].

Impact of EMs on various crops
EM formulations are available commercially as well as
prepared by researchers themselves for pilot- and field-
scale studies. The detail information of some commer-
cially available as well as self-made EM formulations,
along with the participating microbes on plant growth
promotion is furnished in Table 1.
Commercial liquid formulation EM-1 containing lactic

acid bacteria (Lactobacillus plantarum), yeast (Candida
utilis), and actinomycetes (Streptomyces albus) decom-
poses fruits and vegetables refuge and the resultant

compost performs better in terms of increased leaf sur-
face area, total leaves, total chlorophyll content, shoot
length, plant height, branches and foliage count [22].
Another EM formulation composed of Bacillus sp.
Pseudomonas aeruginosa, Streptomyces sp. was used in
seed treatment of sunflower for improving crop per-
formance, that also help in preventing sunflower from
necrosis disease [31]. EM culture consisting of photosyn-
thetic bacteria (Rhodopseudomonas palustris and Rhodo-
bacter sphaeroides), lactic acid bacteria (Lactobacillus
plantarum, Lactobacillus casei and Streptococcus lactis),
yeasts (Sacharomyces sp.), and actinomycetes (Strepto-
myces sp.) reportedly produces bioactive substances in-
cluding enzymes, controls soil-borne diseases and
accelerates lignin decomposition in the soil [32]. EMs
are mutually compatible, and live for an extended period
[33]. EMs could suppress the growth and activity of the
indigenous putrefactive microbes that add to malodours
in plants [34]. Problems in handling of organic urban
waste like bad odour, fly population control and patho-
genic microbes’ devaluation in piling of waste could be
prevented by applying formulated EMs [34].
EM Application has been successfully tried on vege-

table crops in New Zealand and Sri Lanka, herbage
grasses in Holland and Austria, and apples in Japan.
Bokashi (nutrients and EM-enriched compost) was ap-
plied in these studies, that increased the yield over a
period of time [35]. As the first solid form of EM formu-
lation for agricultural applications, Bokashi compost was
prepared using organic refuge like saw-dust mixed with
nitrogen-rich materials like rice husk, corn bran, wheat
bran, fish meal and oil cake [36]. Bokashi base material
is normally prepared by mixing molasses with water,
followed by the addition of EM consortia. The resultant
mixture is further mixed with dry ingredients (mixture
of rice bran, oil cake, fish meal, etc.). The final mixture
is allowed to ferment in airtight container, for 4–5 (in
summer) to 7–8 (in winter) days under tropical condi-
tions. After fermentation, a sweet and fermented odour
suggests that Bokashi is ready for application. Bokashi
reportedly facilitates nutrient release from soil, improves
soil carbon mineralisation, and enhances the soil proper-
ties. It also increases the photosynthesis and protein ac-
tivity in crops, increases crop resistance to water stress,
facilitates spreading of the roots, and suppresses the
pests and plant diseases in agricultural practices [35–37].
Liquid EM formulations have been used in agricultural

practice extensively. Foliar application of EM formula-
tion was compared with chemical fertilisers on onion,
watermelon, garlic and tomato, and the yields were
higher in EM application. Foliar application of EMs
evades various biotic and abiotic factors and other limi-
tations in soil microenvironment, thereby increasing the
yield and quality of crops, fruits and vegetables [24].
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Foliar application alongside NPK amendment of soil re-
sulted in 120% grain yield, 217% in nodular number and
167% in nodular biomass, while an additional green ma-
nure amendment increased the grain yield by 145% [25].
Compared to the control, foliar spray of EM formulation
at 15-d interval for three times gave higher pod yields in
okra [38].

Role of EMs in agro-ecosystem
Plant growth by EMs may proceed either through dir-
ect or indirect action [39]. Direct action refers to soil
amelioration, production of plant growth substances,
soil fertility improvement by mobilising soil mineral
components, N2-fixation, phosphate and minerals
solubilization, phytohormones production, and deame-
nase activity. The indirect action, on the other hand,
refers to the biocontrol activities that inactivate or kill
plant pathogens thereby providing a healthy cropping
environment.
Plant growth-promoting rhizobacteria (PGPR), plant

growth-promoting bacteria (PGPB) and vesicular-
arbuscular mycorrhizae (AMF) fungi are various growth
promoting microbes (PGPM). PGPR provides a favorable
environment for plant–microbe interaction. N2-fixers
like Rhizobium, Sinorhizobium, Bradyrhizobium, Azorhi-
zobium, Mesorhizobium, Allorhizobium are potential
mutually-benefitting plant growth promoting endosym-
bionts [39]. Genera like Azospirillum, Enterobacter,
Klebsiella and Pseudomonas proficiently colonize root
surfaces and fix nitrogen [40]. PGPB like Pseudomonas
fluorescens and Bacillus subtilis induce PGPRs to pro-
duce plant growth-promoting substances [41]. As a clas-
sic case of symbiosis, the amino acids, carbohydrates,
active enzymes and organic acids secreted by the plant
roots are used by the EMs, and the EMs secrete amino
acids, various vitamins, nucleic acids and hormones for
the plant in return.
ACC (1-aminocyclopropane-1-carboxylic acid) deami-

nase producing microbes like actinomycetes would take-
up and metabolise ACC to α-ketoglutarate and NH3,
thereby decreasing ethylene concentration (excess con-
centration adversely affects growth) in plant. These acti-
nomycetes individually or as coinoculants reportedly fix
N2, solubilize phosphate, and produce siderophore in
sugarcane [42]. Soil actinomycetes could produce nu-
merous antibiotics and extracellular enzymes that inhibit
plant pathogens. Numerous actinomycetes protect plants
against diseases [43]. Soil salinity particularly in coastal
belts is a challenge for crop growth and wellbeing [44],
and Enterobacter sp. UPMR18 reportedly enables okra
plant to withstand salt stress [45]. Okra plant has better
germination percentage and higher leaf chlorophyll con-
tents by rhizospheric EM symbionts [42].

Interactive role of participating microbes in a
formulated EM
Coexistence of various microbial species is a prerequisite
in a formulated EM. Microbial interactions occur
through secondary metabolites, siderophores, quorum
sensing system, biofilm formation, and cellular transduc-
tion signalling [46]. The ultimate interaction unit is the
gene expressed in each organism in response to an en-
vironmental (biotic or abiotic) stimulus that is respon-
sible for the production of molecules for microbial
interactions [46]. The participating microbes in an EM
formulation may interact with each other through mu-
tualism, commensalism, and protocooperation. A case
example of mutualism is the blue green algae and fungus
where they exchange nutrition among one another [46].
The algae get protection from environmental stress by
the surrounded fungal hyphae which in turn gets carbon
that is fixed by algae (algal photosynthesis). Similarly, a
commensalism association is seen in cellulose and lignin
degrading fungi to glucose and organic acids that are
utilised by bacteria further [47].
Protocooperation is a mutualism in which both the

microbial partners benefit from each other without de-
pending on each other for survival [48]. Here, favor is
extended by one organism to its associate by providing
carbonaceous products. Nutritional association for sev-
eral vitamins, amino acids and purines is observed be-
tween bacteria and fungi in terrestrial ecosystems.
Nutritional protocooperation may be formed between
various bacteria and fungi in which various vitamins,
amino and purine are produced by certain microbes that
could be utilised by the partner microbes. Proteous vul-
garis and Bacillus polymyxa may form nutritional proto-
cooperation for nicotinic acid and biotin, respectively
[49]. While formulating an EM, other various interac-
tions of little relevance are antagonism, competition,
parasitism, and predation. The survival of one microbe
may be at stake (due to the inhibitory or lytic effect of
the other partner) when these microbial associations are
negative.

Plant-microbe interaction
Plants constantly interact with an enormous soil micro-
flora (Fig. 2). Ecological interactions like mutualism,
commensalism, amensalism, protocooperation and an-
tagonism might contribute to the overall soil health and
plant wellbeing [13, 46, 50]. Lichen is an association of
green or cyanobacterial algae with fungus (ascomycetes).
The alga is saved from environmental stresses by the
fungal hyphae, while the fungus obtains nutrients and
oxygen from the photosynthetic algae. Similarly, the le-
guminous plant acquires readily available fixed nitrogen
source from Rhizobium, and the Rhizobium is protected
by the leguminous plant from environmental stress in

Naik et al. Sustainable Environment Research           (2020) 30:10 Page 7 of 18



return. Frankia (an actinomycete) forms a symbiotic as-
sociation with Alnus and Casuarina (non-legume plants)
supplementing them with the fixed nitrogen and obtains
organic nutrients in return. Mycorrhizal fungi associate
with the plant roots and obtain carbohydrates, while it
increases the surface area for water, N, P and inorganic
nutrients to be absorbed by plants in return. Endomy-
corrhizal symbioses help plant withstand environmental
stress and enhance the soil structure by forming hydro-
stable aggregates [51, 52].
Amensalistic association suppresses the growth of one

partner by the other through toxins (like antibiotics)
production. Here, a soil pathogenic microbe is inhibited
by amensal partner where the later remains unaffected
thereby benefitting crop growth. Some amensals also re-
lease harmful gases like hydrogen cyanide (HCN), ethyl-
ene, methane, nitrite, sulphides and other volatile
compounds of sulphur [52]. In agriculture, synergism is
seen between VAM fungus-legume plants and Rhizo-
bium. In this association, nitrogen is fixed by Rhizobium
for the plants to uptake the fixed nitrogen. Phosphorus
uptake by plant is also elevated which results in in-
creased crop yields and improved soil fertility.
Antagonism association is the most common in nature

which is governed essentially by antibiotic production.

Here, an organism directly or indirectly inhibits the ac-
tivities of the other, e.g., the soil Bacillus sp., Pseudo-
monas fluorescens and Streptomyces sp. produce
antibacterial and antifungal antibiotics that help sup-
press various plant pathogens. Thiobacillus sp. reduces
the soil pH up to 2.0 thereby restricting the growth of
pH-sensitive microbial species. In lichen, the O2 pro-
duced by algae prevents anaerobic microbes from colon-
isation, while the cyanide produced by fungi is toxic to
numerous other microbes [13, 46, 50, 52].

Microbial (EM) formulation
Probiotics (EMs)
As mentioned earlier, the EMs predominantly consist of
physiologically compatible lactic acid and photosynthetic
bacteria, yeasts, fermenting fungi and actinomycetes [10,
53, 54]. Adding photosynthetic bacteria to the soil pro-
vides a heathy environment for growth of other EMs.
VAM fungi increases the soil phosphate solubility and
coexist with the N2-fixing Azotobacter and Rhizobium.
Lactic acid bacteria secrete lactic acid that sterilizes the
soil, and suppresses the thriving harmful microbes (like
Fusarium) and nematodes, and stimulates the decom-
position of lignocellulosic organic materials in soil [55].
Bioactive substances like phytohormones and enzymes

Fig. 2 Microbe-microbe and plant-microbe interactions for sustainable agriculture
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produced by fungi help promote active cell/root division,
while providing useful substrates for EMs, viz., lactic
acid bacteria and actinomycetes [56]. Fermenting fungi
help decompose organic matters and rapidly producing
alcohol, esters and antimicrobial substances that help
suppress harmful insects and maggots [57]. Actinomy-
cetes are other critical antimicrobial producers from
amino acids secreted by photosynthates that would sup-
press the harmful soil microbes. Thus, various EM spe-
cies complement each other and form mutually-
beneficial relationships in the soil [57]. EMs enhance the
quality of soil profile and thereby facilitate crop growth
and development [58].

Prebiotic/carriers for microbial inoculants
Microbial formulation is a carrier-based preparation to
provide microbes with better survival for longer dur-
ation. Prebiotic carriers provide the desired nutrients to
augment the EMs. EMs are formulated with the pre-
biotic to facilitate storage, commercialisation and easy
field application. The affordability and availability are
the two significant factors while selecting a carrier.
Few of the desirable characteristics of a quality carrier

are lump-free material that is easy to process, moisture
absorption capacity, ease of sterilization, cost efficient,
plentily available and a good inherent pH buffering cap-
acity. While dry formulations are produced using solid
carriers like soil (peat, coal, clay, and inorganics), organic
(composts, soybean meal, wheat bran, and sawdust), or
inert (vermiculite, perlite, kaolin, bentonite, and silicates)
materials, liquid formulations can be prepared using
mineral oil, organic oils, oil-in-water suspensions, molas-
ses, humic acid, and landfill leachates [59, 60]. These
have been detailed in Table 2.

Solid carrier base
A formulation can be prepared by mixing compatible
beneficial microbes with the prebiotic. Microbial via-
bility and shelf-life in formulation are important in
formulation. Majority of formulations use charcoal,
talc or other inert carrier material. Pseudomonas
fluorescens formulation was mixed with talc and 1%
carboxymethyl cellulose and used against leaf disease.
Alginate-base formulation of Bacillus subtilis and
Pseudomonas corrugata was easy to prepare and dry,
and could be stored up to 3 years [68].
Compost is a good nutrient natural carrier for the

EMs. It is biodegradable and non-polluting, usually proc-
essed from abundant natural waste materials. While sup-
porting soil microbes to survive, it also facilitates plant
growth. Composting has been established as one of the
low-cost alternatives to minimize the volume of solid
waste disposed of to the environment [59, 69]. This form
of transformation of various organic wastes into

compost is safe and economical [70, 71]. By converting
the biowastes into composts, the nutrients in the waste
can be utilized better creating a zero-waste system [71].
The converted compost would contain a substantial
amount of EMs that are helpful for plant growth and
yield.
Talc and charcoal based formulations of Bacillus sp.

increases the growth of mung bean and rice [72]. Bacil-
lus sp. shows antagonistic effects against various phyto-
pathogens, including Rhizoctonia solani (ITCC-186) and
Fusarium oxysporum (ITCC-578). Likewise, alginate-
base formulation of Bacillus subtilis and Pseudomonas
corrugata (PGPRs) reportedly benefit the crops [68]. A
solid base Piriformospora indica (root endophyte) for-
mulation as bioinoculant enhances the growth of Pha-
seolus vulgaris L. [73]. This solid base formulation also
increases the adaptability of Phaseolus vulgaris L. to
greenhouse conditions.

Liquid carrier base
The EM could be formulated using aqueous, oil or poly-
mer liquid base. The liquid base contains nutrients, cel-
lular protection and additives to promote survival after
seed or soil applications [74]. Such prebiotics in EM for-
mulation are glycerol, vermicompost wash, indole acetic
acid, and malic acid. Such a PGPM formulation of Bacil-
lus licheniformis, Bacillus sp., Pseudomonas aeruginosa,
Streptomyces fradiae shows good microbial survival even
after 120-d storage period [74, 75]. The seed germin-
ation and plant height increase by using liquid formula-
tion treatment in sunflower [74, 75].

Means to apply EM formulations
The various ways to apply agricultural EM formulations
include applying it directly into the soil (soil application),
spraying it on leaves (foliar application), and soaking the
seeds in it prior to sowing [58]. Seeds are soaked in 0.1%
EM suspension for half an hour (for smaller seeds) or up
to 4–6 h (for larger seeds). The seeds are carefully semi-
dried before sowing ensuring that they do not clump.
In foliar application, the crops benefit from the EM

through the foliage. Foliar spray is effective when applied
in the evening or early morning. A dilution of 1:1000
with water is often recommended [58]. Foliar application
of EM with soil application of fermented plant extract
enhances the yields of cucumber and reduces the in-
stance of pickle worm infection [56]. Foliar application
of 0.1% EM improves the quality and enhances the yield
of tea (by 25%), cabbage (by 14%), and sugar corn (by
12.5%) [32]. The impact of foliar-applied EM and seed
treatment on groundnut, along with 0.1, 0.5 and 1.0% (v/
v) EM concentrations foliar application on garlic, onion,
tomato and watermelon at one- and two-week intervals
are effective [32].
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Several soil applications of EM formulations for en-
hanced growth have been reported. Soil application of
EM maintains the photosynthetic efficiency of bean
plant 2 weeks longer [26]. Application of compost-based
effective microbes (Candida tropicalis, Phanerochaete
chrysosporium, Streptomyces globisporous, Lactobacillus
sp.) along with chemical fertilizer dosage enhances the
carotenoid pigment of calendula and marigold by 46 and
12%, respectively [27]. The specific microbes and their
modes of action in plant growth are provided in Table 3
with the impact of rhizosphere-associated EM on plant
growth in Table 4. The potential microbial candidates
for EM formulation are compiled in Table 5.

Climatic (abiotic) factors and the efficacy of EM
formulation
Although EMs are meant to particularly promote plant
growth in harsh (drought, salinity, CO2, high/low tem-
peratures) climatic conditions [38], climatic factors could
also affect the growth and survival of EMs thereby af-
fecting plant growth and productivity [81].
There was an improved interaction between legume

and rhizobia at elevated ambient CO2 concentration
[82]. Atmospheric CO2 fortification facilitates the activ-
ity of Rhizobium leguminosarum over other strains [83].
The nitrogen content of plant tissues in common bean
decreases at elevated atmospheric CO2 condition [84].
Elevated CO2 stimulates microbial growth in rhizosphere
wherein the plant and rhizobia compete for nitrogen
which leads to a low N-nutritional status in plant. The
population of HCN-producing Pseudomonas sp. (inhibit-
ing root parasitic fungi) is reduced at an elevated CO2

conditions, and the fractions of siderophore-producing
and nitrate-dissimilating strains decrease. A study con-
firmed the dominance of Pseudomonas sp. in rye, and
Rhizobium sp. in white clover at elevated CO2 concen-
tration [85]. Pseudomonas mendocina enhances lettuce
growth at elevated CO2 condition [86]. At elevated CO2

condition, the plant biomass, foliar K concentration and
water content increase.
Temperature variation could affect microbial activity

for plant growth. Decreased temperature may enhance
the activity of certain PGPM, while it may be the reverse
in some other cases. The root and shoot significantly in-
crease with the activity of Mycobacterium sp., Pseudo-
monas fluorescens and Pantoea agglomerans at 16 °C in
winter wheat crop in loamy-sandy soil as compared to at
26 °C [87]. The rhizobia isolated from nodules of woody
legume Prosopis glandulosa shows improved growth at
36 °C than 26 °C [88]. Bacteria colonising at various sites
may respond differently to varying temperature, e.g., an
endophyte Burkholderia phytofirmans reduces colonisation
in tomato rhizosphere when the temperature increases
from 10 to 30 °C while the endophytic colonisation remains
unaffected [89].
Various reports on the effect of drought on the effi-

cacy of effective microbes are available. Azospirillum
strains improve the plant-water interaction. Azospirillum
application increases wheat, maize and sorghum yields
in water-limiting conditions. Pseudomonas putida or Ba-
cillus megaterium and AM fungi (Glomus coronatum,
Glomus constrictumor and Glomus claroideum) associ-
ation induce development and drought forbearance in
plants [90].

Table 3 EMs and their specific roles in plant growth promotion

Microbial category Isolates Association Plant growth promotion Ref.

Bacteria Rhizobium sp., Bradyrhizobium sp. Symbiosis (legume-rhizobium) 1. N2-fixation [11, 13, 15, 76]

Bacteria Azospirillum sp., Azotobacter sp. Asymbiotic (non-legume) 1. N2-fixation [14, 16, 17, 76]

Bacteria Pseudomonas fluorescens,
Pseudomonas putida,
Pseudomonas aeruginosa,
Bacillus sp. (Bacillus subtilis)

Rhizospheric soil 1. Biocontrol agent [15, 77]

Fungi Trichoderma viride

Bacteria Bacillus sp.(B. subtilis, B.
megaterium, B. mucilaginosus)
Pseudomonas sp., P. fluorescens

Rhizospheric soil 1. Phosphate solubilisation
2. N2-fixation

[15, 18, 70, 77]

Fungi Aspergillus sp., Penicillium sp.

Yeast Candida tropicalis 1. Phosphate solubilisation [77]

Fungi Arbuscular mycorrhizal fungi (AMF) Symbiotic 1. Provided tolerance to host plants
against various stressful situations
(heat, salinity, drought, metals and
extreme temperatures)

[78]

Actinomycetes Streptomyces sp. Rhizospheric soil 1. Production of antibiotics, siderophores,
antimicrobial enzymes, plant growth
promoting substances
2. Phosphate solubilisation

[79, 80]
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Recombinant DNA technology application has been a
successful approach to improve microbial property
which in turn stimulates the plant to withstand drought
[91]. Trehalose-producing microbes pose the ability to
support and promote plant growth under drought stress.
There are numerous microbial types that stimulate and
promote plant growth under drought stress and these
include Burkholderia phytofirmans, Paenibacillus poly-
myxa, and Actinobacteria [81]. PGPB may stimulate cell
division of root and root hairs that eventually help plant
to take-up water from deeper soil layer [92]. PGPB may
support plant growth under drought situation by regu-
lating abscisic acid and ethylene production [93].

Effect of EMs on crops
There are several reports of beneficial effects of EMs on
crops. This review discusses the effect of EM formula-
tions particularly on cereals, pulses, oilseeds, and vege-
table crops. The rationale behind these selected groups
of crops is based on the economic value and their

popularity among the Indian farming community. EM
formulations and their effect on crops are shown in
Table 6.

Cereals
Rice (Oryza sativa) is the staple cereal crop in India, and
is a principal food for the half of the world’s population.
Approximately 480 MMT milled rice are produced an-
nually to feed the increasing global population. Flooding
is the conventional approach for rice cropping which
means that there is a need for a huge quantity of water.
Yet, around 50% of the rice cultivated area worldwide
suffers from drought. Water deficit impacts the crops
negatively and might result in a significant yield reduc-
tion, especially during critical stages of crop growth
[104, 105].
Drought stress affects the crop yield significantly as

the nutrient uptake by plants decreases. Thus, attempts
to engineer draught-tolerant crops requiring less water
while maintaining or enhancing the production are

Table 5 Various EMs for formulation

Microorganisms Species Function Ref.

Photosynthetic bacteria Rhodopsedomonas palustris
Rhodobacter sphaeroides

1. Produces amino acids, nucleic acids, bioactive
substances and sugars
2. Conducts photosynthesis

[20, 24, 25, 30, 32]

Lactic acid bacteria Lactobacillus plantarum
Lactobacillus casei
Streptococcus lactis

1. Supresses and reduce pathogenic microbes
2. Expedites decomposition of organic matters

[20, 22, 24, 25, 30, 32]

Actinomycetes Streptomyces albus
Streptomyces griseus

1. Produces antimicrobial substances to inhibit pathogens
2. Enhances the decomposition of phospholipid compounds

[11, 22, 24, 25, 30, 31]

Fermentative fungi Aspergillus orizae
Mucor heimalis

1. Decomposes organic matter
2. Synthesises amino acids and glucose from carbohydrates
3. Control odours

[20, 29]

Yeast Saccharmyces cerevisiae
Candida utilis

1. Degrades dead plant tissue and stimulate root growth [20, 22, 24, 25, 30, 32]

Table 4 Rhizosphere associated EMs and their impacts on plant growth

Microbial category Microbial consortium Association Plant growth promotion Ref.

Bacteria Rhizobium sp., Bradyrhizobium sp. Symbiotic (legume-rhizobium) 1. N2-fixation [14]

Bacteria Azotobacter sp., Azospirillum sp. Asymbiotic (non-legume) 1. N2-fixation [15, 17, 18]

Bacteria Pseudomonas putida, P. fluorescens Rhizosphereic soil 1. Biocontrol agents,
2. Biological N2-fixation
3. Nutrients solubilisation

[16]

Bacteria Bacillus megaterium, B. mucilaginosus Rhizospheric soil 1. Phosphate solubilisation
2. Potassium solubilisation

[19]

Bacteria and actinomycetes Bacillus sp., Pseudomonas
aeruginosa, Streptomyces sp.

Rhizospheric soil 1. Prevention of sunflower
necrosis disease

[31]

Lactic acid bacteria, yeast
and actinomycetes

Lactobacillus plantarum, Candida
utilis, Streptomyces albus

Rhizospheric soil 1. Decomposition of organic matter [22]

Lactic acid bacteria,
photosynthetic bacteria,
yeast, actinomycetes and
fermentative fungi

Lactobacillus plantarum, L. casei,
Streptoccus lactis, Rhodopseudomonas
palustris, Rhodobacter sphaeroides,
Saccharomyces cerevisiae, Candida
utilis, Streptomyces albus, S. griseus,
Aspergillus oryzae, Mucor hiemalis

Rhizospheric soil 1. Enhancement of the growth
pattern and nutrient uptake

[20]
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being made. Genetically variant drought tolerant variety
could have enhanced proline and abscisic acid produc-
tion, stabilized superoxide dismutase activity for photo-
synthesis and improved root system [106]. Using a
consortium of advantageous microbes is a prospect to-
wards enhancing drought-resistant plant. Soil microbes
like AMF attached to plant roots interact with specific
microbial communities to develop an array of activities
to enhance crop growth and yield under drought stress
conditions [107].
Rice readily forms mycorrhizal associations in upland

conditions. However, this is uncommon in flooded con-
ditions as the anoxic condition develops at plant-soil
interface. To encourage arbuscular mycorrhiza (AM)
symbiosis, aerobic non-flooded farming conditions to
boost establishment of AM fungi in the rice roots may
be resorted [108]. AMF stimulate the metabolic response
in plant under drought stress [109]. AMF Glomus intrar-
adices enhances rice growth under drought condition
where the shoot weight increases by 50% with AM sym-
biosis compared to the non-AM plants [94]. The photo-
synthesis increases by 40% along with the accumulation

of antioxidant molecule glutathione. AM symbiosis re-
duces hydrogen peroxide and decreases oxidative dam-
age to the lipids [94, 110]. Positive association in
Pseudomonas putida or Bacillus megaterium and AM
fungi (Glomus coronatum, Glomus constrictum or Glo-
mus claroideum) in drought situations positively affect
crop development and drought forbearance [90]. PGPR
like Azospirillum brasilense, Phyllobacterium brassica-
cearum and AM fungi increases crop survival in drought
and nutrient limitation like situations. Biomass growth
and grain yield increase in rice by applying these micro-
bial formulations [95, 111].

Pulses
Majority of the global population depend on pulses for
the major amount of their protein requirements. Pulses
primarily include chickpea, rajmah, black gram, green
gram, beans and lentil. Of these, black gram is a major
food crop in India [41]. Green gram (Vigna radiata) and
black gram (Vigna mungo) grown under tropical and
subtropical conditions are important food legume as
protein source. As these are almost free from gassiness

Table 6 EM formulations and their effect on crops

Crop type Crop Microbes in EM formulations Effect on crops Ref.

Cereal Rice Arbuscular mycorrhiza fungi, Glomus intraradices 1. Improved growth of rice crops under drought
pressure

[94]

Bacillus subtilis, Pseudomonas fluorescens 1. Biocontrol agents with anatagonistic nature [41]

Azospirillum brasilense, Phyllobacterium brassicacearum 1. Growth of plants under drought situation and
nutrient limitation

[95]

Pseudomonas putida (or Bacillus megaterium) and AM fungi
(Glomus coronatum, Glomus constrictum, Glomus claroideum)

1. Plant development and drought tolerance [90]

Pulses Rajmah Pseudomonas lurida-NPRp15, P. putida-PGRs4, Rhizobium
leguminosarum-FB1

1. Effective for plant growth through N2-fixation [96]

Bean Rhizobium sp., Bacillus megaterium (M-3), Bacillus
subtilis (OSU-142)

1. N2-fixation
2. Phosphate solublisation

[97]

Soybean Bradyrhizobium japonium 1. Symbiotic N2-fixation [98]

Oilseed Sunflower Rhizobium sp., Trichoderma hamatum 1. Increase inchlrophyll, root and shoot length, mineral
(N and P), total carbohydrate and protein contents of
crop

[98]

Pseudomonas putida 1. Drought tolerance [31]

Trichoderma harzianum 1. Plasmopora halstedii targeted

Bacillus sp., Pseudomonas aeruginosa, Streptomyces sp. 1. Inhibited sunflower necrosis disease [99]

Grounnut Azospirillum brasilense 1. Enhanced tap root growth [100]

Pseudomonas fluorescens 1. Stimulated lateral root growth

Actinomycetes 1. Hydrogen cyanide, lipase, siderophores, and indole
acitic acid production
2. Inhibited soil born pathogens such as Sclerotium rolfsii

[45]

Vegetables Okra Enterobacter sp. UPMR18 1. Helped in salt tolerance under salinity stress [101]

Trichoderma harzianum 1. Supressed fungal infections [102]

Pseudomonas aeruginosa, Trichoderma viride 1. Biocontrol against Fusarium oxysporum, F. solani,
Macrophomina phaseolina, Rhizoctonia solani and
Meloidogyne javanica

[103]
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causing factors, green gram and black gram seeds are
preferred to feed babies.
India is on the way to develop alternative agricultural

practices to obtain higher pulses yield to fulfil the need
of its larger population. EM formulation enhances crop
growth and yield in both leguminous and non-
leguminous pulses. Pseudomonas lurida-NPRp15 and
Psedomonas putida-PGRs4 either individually or in com-
bination with Rhizobium leguminosarum-FB1 are effect-
ive in growing rajmah [96]. While individual inoculant
increases plant dry biomass, nitrogen, phosphorus, po-
tassium, zinc and iron contents, Pseudomonas lurida
NPRp15 and Rhizobium leguminosarum FB1 (or Pseudo-
monas putida PGRs4, Pseudomonas lurida NPRp15 and
Rhizobium leguminosarum FB1) combination enhance
the root and shoot dry weight, nutrient uptake, nutrient
content, nodulation and pod yield in rajmah [96]. The
EM of Rhizobium, phosphate-solubilising Bacillus mega-
terium (M-3) and N2-fixing Bacillus subtilis (OSU-142)
has also been encouraging on bean plant. These are ef-
fective in nutrient uptake, nodulation, shoot and root
dry weight, seed yield and plant growth. These are
equally more effective as compared to chemical fertiliser
as well [97].

Oilseeds
Sunflower (Helianthus annuus) is an important oilseed
crop and is the second most important source of global
vegetable oil. India ranks 4th by area and 8th in produc-
tion of sunflower. Karnataka, Andhra Pradesh and
Maharashtra are the major sunflower growers contribut-
ing about 91% of the total sunflower cultivation area and
82% of total sunflower production [112]. Wheat bran
compost containing Rhizobium sp. and Trichoderma
hamatum, either individually or in combination, shows
an increase in total chlorophyll, root and shoot lengths,
minerals (nitrogen and phosphorus), carbohydrate and
protein contents in sunflower [98]. Applying symbiotic
nitrogen-fixer Bradyrhizobium japonium (strain TAL-
102) EM as biofertilizer or in combination with farm (or
green) manure in soybean has positive benefit. Coinocu-
lating Bradyrhizobium japonicum and biofertilizer with
farmyard manure exhibits the highest biomass of the
shoot, number and biomass of pods compared to other
treatments [113]. EM formulation of Azospirillum brasi-
lense and Pseudomonas fluorescens individually or mixed
has been applied on groundnut plant through seed treat-
ment, soil application, seedling root tip and foliar spray
[99]. Azospirillum brasilense enhances tap root growth,
whereas Pseudomonas fluorescens is effective in lateral
root growth. A consortium mix enhances leaf numbers
and shoot growth. Out of all treatments, soil application
is the most effective [99].

Drought tolerance of oilseed plant could increase by ap-
plying suitable microbial formulation. Sunflower seeds
treated with Pseudomonas putida could withstand
drought [31]. Besides drought tolerance, EM is effective
against plant pathogens in sunflower. Applying Tricho-
derma hazianum suspension on sunflower crop prevents
it from Plasmopora halstedii (downy mildew). Seed treat-
ment of sunflower with mixed consortium of Bacillus sp.,
Pseudomonas aeruginosa and Streptomyces sp. is fruitful
against sunflower necrosis viral disease [31]. EM formula-
tion increases disease resistance in groundnut; actinomy-
cetes could prevent stem rot disease (by Sclerotium rolfsii)
[100]. Actinomycetes inhibit Sclerotium rolfsii by produ-
cing various antibiotics/chemical agents, viz., hydrogen
cyanide, lipase, siderophores and indole acetic acid [100].

Vegetable plant
Okra (Abelmoschus esculentus) is grown throughout the
tropical and warm temperate regions for its fibrous pods
eaten as a vegetable. It is attacked by numerous insect
pests. Various insect pest’s infestation that decrease the
pod yield in okra include fruit borers, shoot borers, leaf
hoppers, sucking insects, chewing insects, aphids, root
feeding insects, and mites. They suck the cell sap of the
plant thereby destroying the plant vigor. The crop is tol-
erant to the most of the insect pests in wet season, while
leaf hoppers and aphids may cause damage during dry
season [114]. Although chemical control of the pests is
generally practiced for higher yield, use of chemicals
alone is not advisable due to shorter interval in the peri-
odical harvest. Thus, it becomes relevant to look for ef-
fective and eco-friendly alternatives.
Wokozim, kissan supreme tonic (KST) and EM formu-

lation (foliar) applications in okra for pest control show
that KST application is the most effective against suck-
ing pest complex and pod borers resulting in the in-
crease in pod yield. It has been shown that although EM
application results in low pod yield as compared to KST
and Wokozim but it results in higher final yield (8431
kg ha− 1) as compared to 8012 kg ha− 1 in control [38].
Siddiqui et al. [101] suggested that Trichoderma-
enriched compost was more eco-friendly as against inor-
ganic fertilisers, and enhanced crop yield by benefitting
okra cultivation. EM formulation of Enterobacter sp.
UPMR18 enhances the salt tolerance property of okra;
while enhancing salt tolerance it also enhances its ger-
mination percentage as well as chlorophyll content [45].
Strains of Pseudomonas aeruginosa alone or with Tri-

choderma viride (entophytic bacteria) exhibit substan-
tially enhanced disease resistance in okra against
Fusarium oxysporum, Fusarium solani, Macrophomina
phaseolina, Rhizoctonia solani and Meloidogyne javanica
(the root knot nematode). It brings positive impact on
plant growth by improving plant height, fresh shoot
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weight and root length [102]. Brucella K12 strain, a
Cr(VI) reducing bacterium, reportedly enhances the
growth/yield of okra in Cr-contaminated soils [103].

Conclusions
EMs enhance plant growth and productivity by fixing at-
mospheric N2 and supplementing the plants with the
fixed nitrogen as ammonia. Additionally, the release of
trace elements, secreted antioxidant, exopolysaccharides,
bioactive compounds (vitamins, hormones and enzymes)
by the EMs stimulate plant growth and productivity.
Biocontrol agents secreted by the EMs protect the plants
from harmful microbes as also from environmental
stress. EMs contain primarily the photosynthetic and
lactic acid bacteria, fermentative fungi, yeasts, actinomy-
cetes, among others and could be formulated by adding
a solid or a liquid carrier to it. The resulting EM formu-
lation could be applied to the soil by spraying on leaves
(foliar application), soaking seeds in it (seed treatment)
and through irrigation (fertigation/soil application). The
review discusses the impact of various EM formulations
on cereals, pulses, oilseed and vegetable plants. Applica-
tion of EM formulation improves grain productivity, bio-
mass accumulation, photosynthesis efficiency and
drought tolerance in cereals. It increases the trace ele-
ments, biomass, shoot weight, root weight, modulation,
pod production in rajmah, and nodulation, root-shoot
weight and seed yield in bean. It increases shoot weight,
pod number and biomass in soybean. EM formulation
positively affects root-shoot growth, chlorophyll, nitro-
gen, phosphorus, carbohydrate and protein content,
drought tolerance, virus resistance, leaf number and fun-
gal disease resistance in sunflower and groundnut. In
vegetable plants like okra, EM formulation improves the
shoot-root growth, plant height, chlorophyll content,
pod yield, fungal disease resistance, Cr-resistance and in-
sect pest resistance. Thus, for sustainable and more
promising green agriculture, microbial formulations have
an important and indispensable role to play in modern
agriculture for cropping of cereals, pulses, oilseeds and
vegetables.
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