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Abstract 

Improving water quality is a critical issue worldwide. However, the general parameters (i.e., temperature, pH, turbidity, 
total solids, fecal coliform, dissolved oxygen, biochemical oxygen demand, phosphates, and nitrates) used in water 
quality index estimations are unable to identify pollution from industrial wastewater. This study investigated pollution 
sources at a river pollution hotspot by using the positive matrix factorization (PMF) model. A two-phase sampling col‑
lection along a highly polluted river in northern Taiwan was designed. The sampling spots were distributed along the 
river in Phase I to monitor the spatial variation of river pollutants. A pollution hotspot was determined based on two 
indices, namely the summed concentrations of metal elements and a metal index (MI). In Phase II, the river water sam‑
ples were collected from the hotspot twice daily over 30 consecutive days to monitor the temporal variation of river 
pollutants. Source profiles of metal elements were obtained during the monitoring period. The Phase II samples were 
then factorized using the PMF model. Factor profiles retrieved from the PMF model were further assigned to industrial 
categories through Pearson correlation coefficients and hierarchical classification. The results indicated that the main 
pollution source was bare printed circuit boards (BPCB), which contributed up to 92% of the copper in the pollution 
hotspot. In terms of MI apportionment of 11 metals related to health effects, BPCB contributed 91% of the MI in high 
pollution events. Overall, the MI apportionment provides linkages between pollution level and human health. This is 
an evidence for policymakers that the regulation of the effluents of BPCB is an effective means to controlling copper 
concentrations and thus improving water quality in the study area.
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1  Introduction
On September 25, 2015, the 193 member states of the 
United Nations adopted the 2030 Agenda for its 17 Sus-
tainable Development Goals (SDGs) [1]. The agenda 
was expected to guide the actions of international 

communities over the next 15 years (2016–2030). One of 
the 17 SDGs involves improving water quality by reduc-
ing river water pollution. The causes of river water pol-
lution include industrial activity, domestic sewage, 
livestock wastewater, and agricultural wastewater.

The water quality index (WQI) is commonly used to 
evaluate general water quality [2–4]. Multiple param-
eters are involved in the estimation of WQI scores, and 
weighted coefficients are assigned to each parameter 
based on statistical surveys. The general parameters are 
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temperature, pH, turbidity, total solids, fecal coliform, 
dissolved oxygen, biochemical oxygen demand, phos-
phates, and nitrates [5, 6]. However, an index using these 
parameters generally cannot be used to measure pollu-
tion from industrial wastewater.

River water influenced by discharge from an industrial 
district usually has a complex composition including 
metal elements, water-soluble ions, and volatile organic 
compounds. Stable and non-degradable metal elements 
could act as suitable tracers for monitoring pollution dis-
charged by industries [7, 8]. A metal index (MI) based 
on maximum allowable concentration (MAC) has been 
introduced to evaluate the quality of water resources [9, 
10]. Usually, the MAC of an element is set by regulatory 
agencies to protect human health and ecological environ-
ment, which makes the MI a valuable indicator.

To decrease the health hazards of polluted water and 
improve water quality, identifying pollution sources is 
critical. Various statistical techniques have been applied 
for source apportionment. Principle component analysis 
(PCA) has been widely used in the source apportionment 
of water pollution [11–15]. PCA yields linear combina-
tions of original features and can transform large datasets 
into a set of factors with reduced dimensions. However, 
PCA can only provide qualitative information, and it is 
susceptible to outliers. Furthermore, the results of PCA 
does not have physical meaning because the values of 
factors decomposed using PCA can be negative. Positive 
matrix factorization (PMF) is recognized as an effective 
scientific tool and as an improved factor analysis tool for 
source apportionment [16]. Many studies have success-
fully applied PMF to the source apportionment of ambi-
ent particulate matter [17, 18]. In recent years, PMF has 
also been used to investigate pollution sources in aque-
ous environments (e.g., [19–23]). PMF has the following 
advantages: (1) it includes the integration of non-negative 
constraints; (2) uncertainties in the data are introduced 
into the model; (3) it does not need to be orthogonal, 
which makes the formed factors close to real profile of 
pollution sources; (4) it quantifies source contributions; 
and (5) the factors are not excessively influenced by out-
liers [24–26]. However, in most of these studies, source 
apportionment was estimated using spatial samplings, 
which neglected temporal variation in the source contri-
butions. Furthermore, the number of metal species was 
limited and may be insufficient to distinguish complex 
industrial sources.

The objective of this study was to use metal species 
with a receptor model to estimate potential source pro-
files and their contributions in a river pollution hotspot. 
The Ta-Liao-Keng River was selected as an example to 
demonstrate the feasibility of the approach. To the best of 
our knowledge, this is the first study adopting sequential 

time series data of river water samples for PMF modeling 
with factor profiles identified by comparison with pro-
files obtained from industrial effluents. Potential sources 
of MI and their contributions were apportioned to clar-
ify the relationship between pollution levels and human 
health.

2 � Material and methods
2.1 � Study area and river water sample collection
The Ta-Liao-Keng River is a tributary of the Dahan River, 
which is a major river in Taiwan (Fig. 1). The length of the 
Ta-Liao-Keng River is 12.3 km, and its catchment area is 
approximately 29.4 km2. The river has four branches and 
flows eastward from Taoyuan City to New Taipei City (A 
fishbone diagram is provided in Fig. S1 of Supplemen-
tary Materials). The main industrial area is located at a 
downstream section of the river and is especially concen-
trated on Tandigou, a tributary (S4 in Fig. 1). According 
to a report published by the local government in 2017, 
the Ta-Liao-Keng River was the main contributor of cop-
per (Cu) to the Dahan River. Thus, further investigation 
of the source pollution, especially for Cu, in the Ta-Liao-
Keng River is imperative.

For this study, a sampling scheme with two phases was 
designed. In the first phase (Phase I, end of April 2019), 
four sampling sites along the Ta-Liao-Keng River were 
selected to locate a hotspot for further investigation. The 
river water quality was monitored from downstream to 
upstream. Four additional sampling sites at four branches 
served as background sites. A total of eight river water 
samples were collected during this phase. During the 
sampling period, mild weather (with at most light rain-
fall) minimized the potential contributions of suspended 
solids from sediments to metal elements in the river.

Two pollution indices, the sum of elemental metal con-
centrations and MI, were applied to investigate the pollu-
tion hotspot. The MI was defined as

where Ci is the concentration of one of 11 controlled ele-
ments, i.e., silver (Ag), arsenic (As), cadmium (Cd), Cu, 
hexavalent chromium (Cr6+), mercury (Hg), manganese 
(Mn), nickel (Ni), lead (Pb), selenium (Se), and zinc (Zn). 
Table  1 presents the MAC values of these 11 elements, 
which are enforced by Taiwan Environmental Protection 
Administration (TEPA), for surface water. Because triva-
lent chromium and Cr6+ can convert back and forth, a 
measurement of total chromium can avoid missing one of 
these. Instead of using Cr6+, total chromium was meas-
ured and used to estimate the MI. Pollution is a cause for 
concern when the MI is greater than one.

(1)MI =

i

ci

(MACi)
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In the second phase (Phase II, July 2019), samples were 
collected twice daily over 30 consecutive days (N = 60) at 
the hotspot identified in Phase I. The collected samples 
were used to evaluate temporal variation in river water 
pollution and for PMF modeling.

2.2 � Sampling of industrial wastewater
To investigate potential pollution sources and assign 
them to industrial categories, representative source 
profiles were needed. A total of 20 wastewater samples 
from 9 effluent discharges were collected as source pro-
files. Furthermore, because the river could be contami-
nated by untreated wastewaters which were discharged 
by factories unintentionally, three manufacturing 

units were selected for sampling based on previous 
violations. Most industrial wastewater samples were 
collected twice during the sampling time to reduce 
uncertainty in the source profiles (Table  S1). Overall, 
samples were collected for six industrial categories: 
chemical materials and products (CMP), bare printed 
circuit boards (BPCB), electroplating products (EP), 
food manufacturing (FM), finishing of textiles (FT), 
and metal surface treatment (MST). To further inves-
tigate the association between human activities and the 
river pollution, domestic sewage (DS) was collected as 
a potential source. The wastewater samples were col-
lected and preserved in accordance with the Standard 
Method [27].

Fig. 1  Locations of the sampling sites in the Ta-Liao-Keng River

Table 1  Water quality standards of TEPA for heavy metal content in surface water

a MAC Maximum allowable concentration

Element Ag As Cd Cr6+ Cu Hg Mn Ni Pb Se Zn

MACa (μg L−1) 50 50 5 50 30 1 50 100 10 10 500
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2.3 � Chemical analysis
To quantify metal elements and trace elements in river 
water and wastewater samples, inductively coupled 
plasma–mass spectrometry was used according to the 
Standard Method [28]. A total of 52 elements were ana-
lyzed and the method detection limit (MDL) of these 
elements ranged from 0.03 to 1.67 μg L− 1 (Table S2).

2.4 � Source apportionment
The PMF 5.0 software released by U.S. Environmental 
Protection Agency was used for source apportionment 
in the second phase [29]. In PMF modeling, the mass 
balance equation is expressed as

where Xij is the jth species concentration measured in the 
ith sample, gik is the contribution of the kth source pol-
lution in the ith sample, fkj is the source profile defined 
by the jth species concentration in the contribution of the 
kth source pollution, and eij is the residual.

The uncertainty of measurements in PMF is calcu-
lated using

when the measured concentration is higher than the 
MDL [29]. When the measured concentration is less than 
the MDL, the concentration is replaced with half the 
MDL, and the uncertainty is estimated as follows:

In PMF, the objective function is defined using

where n is the number of samples and m is the number 
of species. The optimal values of contributions (gik) and 
sources profiles (fkj) can then be retrieved by minimizing 
Q(E).

To determine the number of factors, PMF was run 
sequentially using a varied number of factors from 3 to 
8. The scaled residual (rij) of each run is used to calcu-
late the maximum individual column mean (IM),

(2)Xij =

p
∑

k=1

gik fkj + eij

(3)uij =

√

(

0.5×MDLij
)2

+
(

0.1× Xij

)2

(4)uij =
5

6
×MDLij .

(5)Q(E) =

n
∑

i=j

m
∑

j=1

(

eij

uij

)2

(6)IM = max
j=1...m

(

1

n

n
∑

i=1

rij

)

and the maximum individual column standard deviation 
(IS),

The appropriate number of factors is that for which the 
derivatives of IM and IS seem to level off [30].

In PMF modeling, bootstrapping is performed to eval-
uate the stability of the solution and the uncertainties of 
the source contribution estimates. The reproducibility of 
bootstrapping on each run (three to eight factors) is used 
to determine the number of factors, as well. In this study, 
100 was chosen for the number of bootstrap runs. The 
steps taken in this research is shown in Fig. S2.

3 � Results and discussion
3.1 � Spatial and temporal variations in river water 

measurements
The sum of elemental concentrations was low from the 
upstream reaches and gradually increased along the river 
in Phase I (Table S3, Sites S8, S5, S3, and S1). The two 
species with the highest concentrations were aluminum 
(Al) and iron (Fe); the sum of Al and Fe at S6 was 86% 
of the elemental concentrations. Al and Fe are the most 
abundant metals in the Earth’s crust. To focus on indus-
trial pollutants, Al and Fe were eliminated from the fol-
lowing estimations. The highest elemental concentration 
was observed at Tandigou (S4), a tributary of the Ta-Liao-
Keng River. The concentration at S4 was almost six times 
greater than that of the background water (S8). The sec-
ond highest value was observed in the other tributary, S2. 
The high concentrations in tributaries instead of in the 
main stream was probably due to inputs from domestic 
wastewater and industrial effluents in the downstream 
area. The MI at S4 was up to 42.8, 17 times higher than 
that at S8, which indicated high levels of pollution at S4. 
Based on the spatial analysis of the metal elements in 
Phase I, S4 was chosen as the pollution hotspot.

In Phase II, the pollution hotspot was monitored 
twice daily over 30 consecutive days beginning on July 
1, 2019. Summary statistics for the measured elemental 
concentrations are provided in Table S2. The three ele-
ments with the highest mean concentrations (exclude 
Al and Fe) were Cu (1246 μg L− 1), Zn (558 μg L− 1), and 
Ni (313 μg L− 1). When applying the PMF model, data 
pretreatment is crucial. Species must be removed if 
more than 70% of the data points are below the detec-
tion limit. In this study, the following 13 species were 
excluded: dysprosium, erbium, europium, hafnium, 
holmium, iridium, platinum, ruthenium, samarium, 

(7)IS = max
j=1...m





�

�

�

�

1

n− 1

n
�

i=1

�

rij − ri
�2







Page 5 of 10Hsieh et al. Sustainable Environment Research           (2022) 32:33 	

tellurium, thulium, ytterbium, and zirconium. Most of 
the excluded species are rare earth elements and pre-
cious metals. Furthermore, data quality is evaluated by 
signal-to-noise ratios in PMF modeling and inadequate 
species can be weighted down or eliminated during the 
optimization. We eliminated six elements with poor 
fit, namely gold, boron, cobalt, molybdenum, anti-
mony, and tantalum. Finally, 31 of the 50 elements were 
included in the PMF model.

The highest total elemental concentration at S4 was 
observed on July 1 when the concentration was up to 
13,465 μg L− 1 (Fig. 2). The second highest total elemen-
tal concentration, 9100 μg L− 1, was observed on July 
15. In terms of the MI, the largest value, 258, was also 
observed on July 1 (Fig. 3). The second largest MI value, 
170, was observed on July 4. A discrepancy was discov-
ered when defining the pollution events using two indi-
ces. This is discussed in the following sections.

3.2 � Characteristics of the metal elements in industrial 
wastewater

Most industrial wastewater was collected twice, and the 
samples for each factory were averaged to create a com-
posite profile. The composite profiles of eight industrial 
and three manufacturing unit (with “m” in front of the 
category) discharges are illustrated in Fig.  4. CMP was 
represented by a battery factory, which emitted a high 
concentration of Pb. The profiles for BPCB were domi-
nated by Cu, which comprised up to 82% of total elemen-
tal concentrations. The profiles of the EP were dominated 
by Ni, with proportions of up to 88%. FM was repre-
sented by a factory making frozen food, where discharge 
had high concentrations of strontium (Sr) and rubidium. 
The profile of FT was dominated by Sr and Mn. The MST 
was represented by a manufacturer of aluminum-related 
products, and Mn and Ni were dominant in its profile. 
The profile of DS was collected at an apartment complex 

Fig. 2  Measured total metal elemental concentrations and the contributions of Factors 1, 4, and 5 over time

Fig. 3  Measured MI and contributions of Factors 1 and 4 estimated using PMF. The event number is displayed above the peak value
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and was dominated by Mn and Sr. All compositions fol-
lowed the effluent standards established by the TEPA.

3.3 � Source apportionment
IM and IS analyses indicated that possible solutions were 
around six factors (Fig. S3). To identify the optimal solu-
tion, bootstrap analysis was introduced (Table  S4). This 
revealed that five factors provided the most stable solu-
tion with the mapping rate > 80% for each factor. The 
averaged source contributions of total elemental concen-
trations (the sum of 31 elements) and of Cu are depicted 
in Fig. 5. Factor 4 was the greatest contributor (36 ± 5%) 
to total elemental concentrations, followed by Factor 
1 (19 ± 8%) and Factor 5 (16 ± 4%). For Cu, Factors 4 

and 1 offered even larger contributions (64 ± 23% and 
28 ± 18%, respectively). To identify the industrial catego-
ries of the three major contributors, Pearson correlations 
and hierarchical classifications were used. Table  2 lists 
the correlations of Factors 1, 4, 5, with all source profiles 
collected in this study. Factors 1 and 4 had strong correla-
tions (r ≥ 0.96) with BPCB1, BPCB2, and their manufac-
turing unit discharges. The correlation between Factor 1 
and Factor 4 was as high as 0.99. This indicated that Fac-
tors 1 and 4 were in the same industrial category. Factor 5 
was highly correlated with DS (r = 0.95). Figure 6 depicts 
a cluster dendrogram of the hierarchical classification of 
the factors and source profiles. Factor 1 was similar to 
BPCB1 and its manufacturing unit discharge, and Factor 

Fig. 4  Composite profiles of industrial effluents and manufacturing unit discharges
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4 was similar to BPCB2 and its manufacturing unit dis-
charge. Among all source profiles and factors, BPCB1 
and BPCB2 were prominent in the hierarchical cluster-
ing. Moreover, Factor 5 was closely related to DS. BPCB1 
and BPCB2 are Cu-dominated, and the profile of DS is 

dominated by Mn and Sr. Overall, the profile matching 
based on the two methods was consistent, and the mark-
ers for the estimated factors corresponded to those in 
the measured profiles. Factors 1 and 4 were classified as 
BPCB1 and BPCB2, respectively, and Factor 5 was clas-
sified as DS.

The measured total elemental concentrations and the 
contributions of Factors 1, 4, and 5 over time are pre-
sented in Fig.  2. The contribution of Factor 4 closely 
matched certain high pollution events. On July 4, Fac-
tor 4 contributed 86% of total elemental concentrations 
and decreased in the afternoon. Factor 1 was the main 
contributor (76%) of the highest pollution event on July 
1 even though it was not a persistent pollution source. 
By contrast, Factor 5 was a stable, persistent source of 
pollution, but its contribution was relatively small. Con-
centrations of Cu were greater than 3000 μg L− 1 in many 
high pollution events (Fig. S4), and the ratio of Cu to 
total elemental concentration was > 50%. Factor 1 was 
the significant contributor of Cu on July 1. Factor 4 was 
the main source of Cu in high pollution events, except 
for the highest one. For Factor 1, Cu comprised 65% of 
the normalized profile (Fig. S5). Cu was also dominant 
in Factor 4 and represented up to 78% of total elemental 
concentrations. Instead of Cu, Mn and Sr were significant 
in Factor 5.

Fig. 5  Source contributions of five factors to (a) total elemental concentrations, (b) Cu, and (c) MI

Table 2  Correlations of Factors 1, 4, 5, with all source profiles

a CMP Chemical materials and products, BPCB Bare printed circuit boards, EP 
Electroplating products, FM Food manufacturing, FT Finishing of textiles, MST 
Metal surface treatment, DS Domestic sewage. Three manufacturing units 
collected from BPCP1, EP1 and BPCP2 are with “m” in front of the category
b The category with m means the manufacturing unit

Source Pollution Factor 1 Factor 4 Factor 5

CMPa −0.04 −0.02 0.68

BPCP1 0.98 0.98 0.24

EP1 0.04 0.06 0.51

BPCP2 0.96 0.98 0.21

FM 0.01 0.03 0.63

FT 0.03 0.05 0.72

MST 0.03 0.06 0.63

EP2 0.49 0.49 0.14

DS 0.03 0.05 0.95

mBPCP1b 0.98 0.98 0.16

mEP1 0.01 0.02 0.16

mBPCP2 0.98 0.98 0.13
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3.4 � MI apportionment
These analyses in the previous section have focused on 
source apportionments for mass concentrations. From 
the perspective of protecting human and ecological 
health, further quantifying the contributions of sources 
due to MI, which considered both the concentrations 
and MAC of the main toxic elements, is needed. The 
source-specific MI of the pth source (MIp) was calcu-
lated using

where x∗jp is the mean concentration of species j in source 
p, based on the model results, and MIj is the unit MI for 
species j.

The averaged MI was 53.9, with Cu contributing up 
to 77%. The other highly polluting species was Mn 
(10%), followed by Ni (6%). Figure  5c presents the MI 
apportionment results. Factor 4, which was classified as 
BPCB2, was the main MI contributor (53%) at S4. The 
second highest contributor (24%) was Factor 1, which 
was classified as BPCB1. The sum of MI contributions 
from BPCB1 and BPCB2 was up to 77%, indicating that 
BPCB was the industrial category with the greatest 
health risk at S4.

Figure  3 presents the time series of the measured 
MI scores and those of the two largest contributors. 
To compare the source contribution during pollution 
events and nonevents, high pollution events (HPEs) 
were defined as those with MI > 99.3 (i.e., mean MI plus 
one standard deviation), and other events classified as 

(8)MIP =

∑

x∗jpMIj

general conditions (GCs). Nine HPEs were identified. 
The averaged MI of the HPEs was 143, whereas the 
averaged MI of the GCs was 38. The health risk of the 
HPEs was approximately 3.8 times greater than that 
of the GCs. For Events 2, 4, 6, 7, 8, and 9, BPCB2 was 
the main MI contributor; for Event 1, BPCB1 was the 
main contributor. By contrast, the pollutants of Event 
5 were almost equally contributed by both BPCB1 and 
BPCB2. For Event 3, no obvious contributor was identi-
fied, which was also evidenced by the PMF model not 
fitting this event well. Overall, BPCB1 and BPCB2 were 
the main MI contributors to HPEs; the sum of their 
MI contributions was up to 91% (Fig.  7). During GCs, 
BPCB1 and BPCB2 were also the largest health risk 
contributors, and the sum of their contributions was 
79%. DS contributed the second greatest health risk, 
with a 15% contribution. Although DS was not a domi-
nant source pollution in HPEs, it was a stable source 
pollution that contributed 9% of the averaged MI.

3.5 � Limitations
In this study, the MI was considerably higher than the ref-
erence value because of stringent MAC of Cu in Taiwan. 
The guideline for drinking water quality published by the 
World Health Organization [31] is 2000 μg L− 1 for Cu, 
but the MAC of Cu is 30 μg L− 1 in Taiwan. This makes 
estimates of the MI higher if Cu is the main pollutant. 
Nevertheless, establishing stringent a standard for Cu 
can protect aquatic biota [32, 33] and also human beings 
who are at the top of the food chain. Another limitation 

Fig. 6  Cluster dendrogram of hierarchical classification
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is that the result estimated by the PMF model provided 
only information on source contributions by industrial 
categories and not the exact source locations. However, 
this modeling approach is valuable in narrowing down 
pollution sources to specific industrial categories.

4 � Conclusions
This study investigated the source contributions at a 
river pollution hotspot by using PMF. This was the first 
study to apply sequential time series data of metal spe-
cies in PMF to apportion sources and their contribu-
tions by industrial category. The results revealed that 
the main source was BPCB, and the sum of BPCB1 and 
BPCB2 contributions was up to 55% of the total elemen-
tal concentrations and 92% of copper in the study area. 
Because Cu element was the main pollutant in BPCB 
which was the main contributor, this leads to severe cop-
per pollution in Tandigou. BPCB contributed 75% of total 
elemental concentrations in MI. For both elemental con-
centrations and the MI, which is related to human and 
ecological health, BPCB was the main contributor. In fur-
ther investigation of the source pollution in HPEs, the MI 
contribution from BPCB was up to 91%. The results indi-
cated that BPCB contributed toxic pollutants and that 
led to a high percentage of MI contribution. Although 
the waste water samples showed that the discharge for 
each factory monitored in this study followed the effluent 
standard, the overall influence on the Cu concentration 
in river water might still be enormous. Implementing 
comprehensive control strategies, such as tightening the 
effluent regulations, centralizing the water treatment sys-
tem, and enhancing monitoring are warranted, especially 
for the BPCP industry.

In this study, we demonstrated the feasibility of using 
metal species with a receptor model to identify source 
pollution. The model results might provide useful 
information to policymakers for the effective manage-
ment of river environments. For further investigation 
of river pollution, establishing a comprehensive source 
profile database is highly recommended for source 
identification.
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