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Abstract 

This study divided a basin metropolitan area with high air pollution into three subareas, namely urban, suburban, and 
rural, on the basis of population density for a systematic analysis of the effects of local air pollutants on respiratory 
diseases. A panel data regression model was used to estimate the annual incidence growth rates (AIGRs) of the four 
respiratory diseases, namely lung cancer, chronic obstructive pulmonary disease, asthma, and pneumonia, result‑
ing from exposure to fine particulate matter  (PM2.5, diameter of 2.5 μm or less), odd oxygen (ODO), or nonmethane 
hydrocarbon (NMHC). The results indicate that the prevailing wind direction is not a major factor determining the dis‑
tribution of air pollutants. The spatial distributions of ODO and NMHC differed from that of  PM2.5. Three air pollutants 
contributed to positive AIGRs of the four diseases in the study area, but  PM2.5 which had a negative AIGR for asthma in 
the rural subarea. The pollutants with the strongest effects on AIGR, in descending order, were NMHC,  PM2.5, and ODO. 
The effect of ambient NMHC was significant and nonnegligible, especially in the urban subarea. A dimensionless 
potential AIGR (PAIGR) formula was established to quantitatively compare the effects of different air pollutants on the 
four respiratory diseases. The results indicate that ambient NMHC had the strongest effect on the incidences of the 
respiratory diseases, followed by that of ambient  PM2.5. The effect of ambient NMHC was significant and nonnegligi‑
ble, especially in the urban subarea. The PAIGR ratio ranges of  PM2.5 to ODO and NMHC to ODO for the four diseases in 
urban subsarea were from 3 to 19 and from 289 to 920, respectively. This study also applied multivariate regression to 
assess the association among 5 aspects, namely air quality, point source, line source, area source, and socioeconomic 
status, and the incidences of the four respiratory diseases. The results indicate that the model has favorable fit and can 
thus reflect the associations of the 15 factors of 5 aspects with the four respiratory diseases in each subarea.
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1 Introduction
Several studies have examined diseases caused by air 
pollution, such as respiratory diseases [1, 2], malig-
nant tumors [3, 4], and cardiovascular [5, 6], metabolic 
[7, 8], autoimmune [9, 10], and brain [11, 12] diseases. 
Long-term exposure to air pollutants increases all-cause 
mortality [13], especially by aggravating causes of many 
respiratory diseases, such as lung cancer [14, 15], chronic 
obstructive pulmonary disease (COPD) [16, 17], and 
asthma [18, 19]. Short-term exposure to air pollution can 
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cause pneumonia, particularly in children [20, 21] and 
older adults [22, 23].

Numerous studies have investigated the risks associ-
ated with exposure to air pollutants such as particulate 
matter (PM), ozone  (O3), nitrogen dioxide  (NO2), carbon 
monoxide (CO), and sulfur dioxide  (SO2) [24–27].  O3 is 
a reactive oxidant causing both inflammatory and oxida-
tive damage to the respiratory system [28]. Tian et al. [29] 
demonstrated that the city-specific relationship between 
ozone and pneumonia was stronger in older adults and 
not confounded by the effects of other air pollutants. The 
sum of  O3 and  NO2 is called “odd oxygen” which origi-
nates from atmospheric photochemical reactions [30]. 
Odd oxygen (ODO) varies by ozone dominance. Some 
studies and our previous study have verified that ODO 
has a strong positive relation to secondary organic aero-
sol (SOA). Observed  O3 and  NO2 concentrations can be 
used to identify ambient SOA concentration, as in this 
study [31]. ODO is easily absorbed by and highly toxic 
to the human body. Qiu et  al. [32, 33] determined that 
airborne nonmethane hydrocarbon (NMHC) exposure 
increased the risk of respiratory disease–related hospital 
admission. Robust evidence of higher cardiorespiratory 
hospitalizations associated with acute exposure to ambi-
ent NMHC in many cities has been presented [27]. Thus, 
the effects of fine particulate matter  (PM2.5, diameter of 
2.5 μm or less), ODO, and NMHC on various air pollu-
tion–related diseases differ, which warrants investigation.

Most current research focuses on the effects of indi-
vidual air pollutants on disease. The quantification and 
comparison of the effects of major air pollutants on vari-
ous diseases are still lacking. This study directly com-
pares the effects of different air pollutants and different 
environmental factors on various diseases by means 
of dimensionless quantitative results. The study area, 
namely the greater Taichung area, has a population of 

approximately 4.4 million people and is the second larg-
est metropolitan area in Taiwan. It is an industrial and 
commercially developed area with a high population 
density. The topography of the greater Taichung area 
is complicated and includes basins, mountains, hills, 
plains, tablelands, and rivers.

The study area has high levels of air pollution. The 
effect of air pollution on disease is a topic of great con-
cern to residents. Lung cancer, COPD, asthma, and pneu-
monia are the four most common respiratory disorders 
caused by air pollution. This study performed a sys-
tematic analysis to investigate the effects of exposure to 
ambient  PM2.5, ODO, and NMHC on these four respira-
tory diseases and determine the spatiotemporal distri-
butions of their effects. In the study areas, 61 townships 
were divided into 3 subareas (urban, suburban, and rural) 
on the basis of population density. The effects of the three 
air pollutants on the four respiratory diseases in these 
subareas were then assessed.

2  Materials and methodology
A schematic of the study flow chart is presented in Fig. 1. 
The study steps consisted of defining the study area, col-
lecting data, dividing into three subareas based on popu-
lation density, visualizing the spatiotemporal distribution 
of air pollutants and disease incidences, analyzing using 
two statistical methods, outputting-comparing-interpret-
ing of the two results.

2.1  Study area and townships
The greater Taichung area comprises townships with an 
average altitude of lower than 800  m in Taichung City, 
Changhua County, and Nantou County. Figure  2 illus-
trates the study area, which reaches from the Daan River 
in the north to the Jhushuei River in the south and from 
the Taiwan Strait in the west to Jiji Mountain in the east. 

Fig. 1 Schematic of the study flow chart
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As of April 2022, the area with an average altitude of 
higher than 800 m, exclusive of mountainous areas, was 
approximately 3,166  km2, and its population was 4.4 mil-
lion people. The Taichung Basin is surrounded by the 
Miaoli Hills, Dado Tableland, Bagua Tableland, Jiji Moun-
tain, and Touke Hill. The Wu River divides the Taichung 
Basin into the North Basin and South Basin. More than 
half of the population in the study area (approximately 
2.27  million people) lives in the North Basin, the area 
with the highest population density. This study used data 
from townships in Hualien County (inset in Fig. 2) as the 
control data to estimate the incidence rates of the four 
diseases resulting from an increased per unit concentra-
tion of the three pollutants. Hualien is a county on the 

east coast of the island and has the best air quality in Tai-
wan because of its small population.

Figure 3 depicts the locations of the 61 townships in the 
study area. The urban, suburban, and rural subareas cor-
responded to areas with population densities of > 4000, 
1000−4000, and < 1000 people  km−2 respectively; the num-
ber of townships in each subarea was 10, 26, and 25, respec-
tively. The urban and suburban subareas are in the North 
Basin and on the east side of the Changhua Plain respec-
tively, and the rest of the study area is the rural subarea.

2.2  Data sources
Data from 2000 to 2019 were collected from the Tai-
wanese government. Air quality monitoring data were 

Fig. 2 Location and terrain of the study area

Fig. 3 Locations of the 61 townships, the urban, suburban, and rural subareas



Page 4 of 16Liang et al. Sustainable Environment Research            (2023) 33:1 

collected from the official website of Taiwan’s Environ-
mental Protection Administration (TEPA; https:// data. 
epa. gov. tw/ datas et/ detail). Incidence data were extracted 
from the National Health Insurance Research Database 
(http:// nhird. nhri. org. tw/), which is managed by the 
National Health Research Institute of Taiwan and con-
sists of data from a large longitudinal and retrospective 
cohort of 1  million people randomly sampled from the 
total population of 23  million. The data comprise medi-
cal records including age, sex, disease diagnoses, and 
sociodemographic factors. The medical records collected 
from this database were anonymized. The data were dei-
dentified, and patients with respiratory diseases were 
identified using the International Classification of Dis-
ease, Ninth Revision, Clinical Modification. Emissions 
data from various sources were retrieved from the Taiwan 
Emission Data System (TEDS 11.0; https:// air. epa. gov. tw/ 
EnvTo pics/ AirQuality_6.aspx) and averaged over 2017 
to 2019. Population density, salary in NT$, and medi-
cal labor force data were retrieved from Taiwan’s Open 
Government Data Platform (https:// data. gov. tw/ datas et, 
accessible at the webpages of /8410, /103,066, and /6474, 
respectively). Both  O3 and  NO2 are harmful secondary 
air pollutants that cannot be ignored, and they are rap-
idly converted between each other and associated with 
secondary organic aerosols. Therefore, the sum of their 
concentrations is called “odd oxygen”. In terms of health 
effects,  O3 and  NO2 are discussed together rather than 
 O3 or  NO2 alone. Ambient odd oxygen was defined as the 
sum of ozone and nitrogen dioxide concentrations. ODO 
surrogate concentration was derived from the observed 
odd oxygen  (O3 +  NO2) concentration.

2.3  Software and statistical analysis
2.3.1  Visual and spatial analysis
Esri’s ArcGIS 10.3.1, the Taiwan Township Boundary 
File, and Inverse Distance Weighted in the Spatial Ana-
lyst Module were used to create maps for geographic data 
and to analyze the spatial characteristics of the air pol-
lutants and respiratory diseases. IBM SPSS 22.0 was used 
to identify associations between exposure to the three air 
pollutants and the respiratory diseases.

2.3.2  Panel data analysis
A panel data regression model was used to evaluate the 
annual incidence rate (AIR) of the four respiratory dis-
eases resulting from exposure to the four air pollutants. 
The formula is as follows:

(1)Yit = α0 + α1Dit + α2Treatit + α3Airpollutionit+α4I it + ǫit , t = 2000, . . . , 2019

where Yit is the outcome for district/township i in the 
target area in year t. Dit is a vector of year dummy vari-
ables and was assigned a value of 0 for the year of 2000 
and 1 otherwise. The treated areas were the target and 
control areas, which were assigned a Treatit value of 1 for 
each district/township of the target area and 0 otherwise. 
εit is a random error term, which may include pollutant-
specific or year-specific components. α0 is a constant 
term, and α1, α2, and α3 measure the main effects at refer-
ence values that corresponded to their covariate vector, 
namely year dummy variables, treated target area, and 
concentration of air pollutants, respectively; α4 measures 
the interaction between Treat and Air pollution.

Covariate vector Iit for the interaction terms of Tre-
atit, Air pollutionit, and Dit was evaluated using the fol-
lowing equation:

where Iit is the incidence per unit pollutant concen-
tration, which was calculated using the differences in 
the data between the target and control areas.

2.3.3  Multivariate linear regression
There are 11 air quality monitoring stations in the 
study area, but the number of factories exceeds 31,000. 
If only exposure data (air quality monitoring data) 
is used in multiple regression, it may cause large bias 
due to insufficient data. Therefore, an ideal evaluation 
model of air pollution and its relationship to disease 
must account for the effects of air quality, point source, 
line source, area source, and socioeconomic status on 
regional morbidities. This study analyzed three factors 
for each of these aspects. Ambient concentrations of 
 PM2.5, ODO, and NMHC were used as the representa-
tive factors for air quality. Point, line, and area sources 
had the same representative factors, namely  PM2.5, 
 NOx, and NMHC emission concentrations. Population 
density, salary, and medical labor force were the repre-
sentative factors for socioeconomic status. The evalua-
tion model for morbidity prevalence MP is as follows:

(2)Iit = treatit × airpollutionit×Dit

(3)

MP =�
0
+

3
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3
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3
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3
∑

m=1

�m[AS]m +

3
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where [AQ], [PS], [LS], [AS], and [SE] are the values of 
the factors for air quality, point source, line source, area 
source, and socioeconomic status, respectively. αo is a con-
stant term; βi, γi, δi, 𝜉i, and 𝜆i are the coefficients of factors 
for point source, line source, area source, and socioeco-
nomic status, respectively, which were estimated using the 
multivariate linear regression module of IBM SPSS 21.0.

2.3.4  Preparing wind roses
Because the Changhua air quality monitoring station 
(in Township 27; Fig.  2) is in the middle of the study 
area, its meteorological data are representative and 
were thus used to create an annual wind rose diagram 
of the study area. The Wind Chart Module of Golden 
Grapher 4 was used to create annual wind roses for the 
study area from 2005 to 2019.

3  Results
3.1  The selection of control data
The study area includes Taichung City, Chang-
hua County, and Nantou County. In addition, Hual-
ien County was selected as the control area. Figure  4 

presents the statistical data for population, average 
annual income, and number of vehicles in the three 
target cities and counties and the control county from 
2005 to 2019. The counties with the largest population, 
in descending order, were Taichung, Changhua, Nantou, 
and Hualien. However, only Taichung City had posi-
tive population growth (179,290 people  year−1; Fig. 3a). 
The population growth rates of Changhua, Nantou, 
and Hualien were approximately − 1200, −3193, and 
− 1445 people  yr−1, respectively. Taichung is the only 
municipality in central Taiwan. Therefore, the popula-
tion concentration of Taichung is high, as expected. 
Unlike other counties, Taichung population is steadily 
growing. The growth rates of average annual income in 
Taichung, Changhua, Nantou, and Hualien were approx-
imately 18,270, 9,900, 7,160, 15,620 NT$  yr−1, respec-
tively. Areas with the highest average annual income, in 
descending order, were Hualien, Taichung, Nantou, and 
Changhua (Fig.  4b). These data indicate that the peo-
ple of Hualien (the control county) are well above the 
threshold for poverty. The number of vehicles in the four 
cities and county was similar to those for the entire pop-
ulation and therefore proportional to the population of 

Fig. 4 Statistical data of (a) population, (b) average annual income, and (c) vehicle in three target cities/counties and the control country from 
2005 to 2019. Passenger Car unit PCU (PCU) is a vehicle unit used for expressing highway capacity. A single vehicle, motorcycle, bus, and truck are 
considered to be 1, 0.3, 2.5, and 2.5 PCU, respectively
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the city (Fig.  4a and c). Higher numbers of people and 
vehicles indicate more air pollutant emissions. There-
fore, the air pollutant data and incidence data of Hualien 
County were used as control data in the study.

3.2  Annual emissions of  PM2.5, ODO, and NMHC
The emissions data from various sources were retrieved 
from the TEDS 11.0 of Taiwan’s EPA. The TEDS is an 
open database that contains data on air pollutants in 
the atmosphere collected from various stationary and 
mobile pollution sources across Taiwan; these data are 
averaged over 3 years and published every 3 years. The 
TEDS 11.0 is the latest version of the database, with its 
data being averaged from 2017 to 2019. These data are 
the sum of primary pollutant emissions from station-
ary, mobile, and area sources, which are different from 
monitoring data of air quality.

Figure  5 presents bubble plots of the annual  PM2.5, 
 NOx, and NMHC emissions in the study area and for 
all of Taiwan based on the TEDS 11.0 data. The results 
indicate notable emission sources and high levels of 
emissions in the northern, central, and southern parts 
of western Taiwan. The results also indicate that the 
study area is a highly industrialized metropolitan area. 
A comparison of the results in Fig.  3 and the insets 
of Fig.  5 revealed that the main emission sources of 
 PM2.5,  NOx, and NMHC are located in the urban and 
suburban subareas.  PM2.5,  NOx, and NMHC had large 

emission sources, with emissions greater than 360 
t  yr−1, in the study area. Some of the larger NMHC 
emissions occurred between the densely populated 
urban and suburban subareas. Therefore, the three 
air pollutants strongly affect the health of the local 
population.

3.3  Spatiotemporal distributions of PM2.5, ODO, and NMHC
The representative annual wind roses in the northern, 
central, and southern of the study area are presented in 
Fig.  6. The results demonstrate that the annual prevail-
ing wind directions at the three air quality stations from 
2005 to 2011 were similar, which were northeast and 
southwest (with a wind angle range of 45 to 225°). During 
this period, the most frequent wind speeds, in ascending 
order, were 1 to 3, 3 to 5, and 5 to 7 m  s−1. After 2012, 
the prevailing wind direction was between the south 
and southwest. Wind speeds were mainly 1 to 3  m  s−1, 
except in 2017 and 2018, when they were 3 to 5  m  s−1. 
According to the local meteorological field, the prevailing 
winds between the south and southwest were dominant, 
followed by the northeasterly prevailing wind. The wind 
speed varied only slightly from year to year.

The annual concentration distribution contours and 
annual wind roses from 2005 to 2019 are depicted in 
Fig.  7. The annual average concentration of  PM2.5 sig-
nificantly increased from north to south and decreased 
each year, especially after 2015 (Fig.  7a); air quality 

Fig. 5 Bubble plots of annual (a)  PM2.5, (b)  NOx, and (c) NMHC emissions in the study area
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control measures in the study area were thus effective. 
However, the spatiotemporal distribution of  PM2.5 
was independent of subarea. The local wind field did 

not significantly affect the PM distribution, perhaps 
because of the low local wind speeds. The mean wind 
speed between 2005 and 2019 was 1 to 3  m  s−1. The 

Fig. 6 The representative annual wind roses in the northern, central, and southern of the study area

Fig. 7 Spatiotemporal distributions of  PM2.5, ODO, and NMHC in townships of study area from 2005 to 2019. The inset in each subfigure is its annual 
wind rose. The white and black lines are the urban and suburban boundaries, respectively
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formation of secondary aerosol at low wind speed may 
also be one of the reasons affecting the distribution and 
high concentration of  PM2.5. All  PM2.5 concentrations 
were higher than the annual average standard value in 
Taiwan (15 µg  m−3); thus, the study area is moderately 
contaminated by  PM2.5.

ODO and NMHC exhibited an opposite spatial dis-
tribution to that of  PM2.5 (Fig.  7b and c); the highest 
concentrations, in descending order, were in the urban, 
suburban, and rural subareas. However, some high ODO 
and NMHC concentrations were detected in the eastern 
townships near the mountains, possibly because of the 
barrier effect of the mountains (Fig.  2). Similar to the 
concentration of  PM2.5, the annual average concentra-
tions of ODO and NMHC decreased each year.

3.4  Spatiotemporal distribution of respiratory diseases
Figure  8 depicts the spatiotemporal distribution of 
incidence for the four respiratory diseases in the study 
area from 2005 to 2019. The incidence of lung cancer 
increased from north to south, similarly to the concen-
tration  PM2.5. Unlike the concentrations of the pollut-
ants, the incidence of lung cancer increased each year, 
which may have been a delayed effect of air pollution. 
The area with the highest incidence of lung cancer was 
the rural subarea of Changhua (Figs.  3 and 8a). How-
ever, the emissions of the three air pollutants in this 
area were lower than those in the urban and suburban 
subareas (Fig. 5a and c).

The spatiotemporal distributions of the incidences of 
COPD and asthma differed only slightly and decreased 
each year. (Figure  8b and c); the areas with the highest 
incidences, in ascending order, were the rural, suburban, 
and urban subareas: a spatial distribution similar to that 
of the incidence of lung cancer. High COPD and asthma 
incidences were observed in the rural subarea despite it 
having the lowest density of air pollution sources (Fig. 5). 
The incidences of COPD and asthma in the rural subarea 
decreased considerably in 2018 and 2019.

The incidence of pneumonia was initially higher in 
the east and south but eventually increased across study 
area. Pneumonia is a short-term acute disease and there-
fore cannot result from the delayed effects of air pollu-
tion. The concentration of ODO was consistently high 
between 2005 and 2019 (Fig.  8b). The main component 
of odd oxygen is ozone. Therefore, the concentration of 
 O3 was also consistently high between 2005 and 2019. 
Ozone is a reactive oxidant causing both inflammatory 
and oxidative damage to the respiratory system [27]. 
Tian et  al. [29] observed an association between hospi-
tal admissions for pneumonia and ozone exposure that 
was stronger for the older adult population. Therefore, 

the high concentrations of ozone may have increased the 
incidence of pneumonia in the study area. In Taiwan, the 
annual mean concentration of  O3 is usually consistent, 
but ozone event days (with an 8-h average of ≥ 71 ppb) 
occur, with a considerable increase noted after 2017 [18]. 
This increase in ozone event days may also have contrib-
uted to the increased incidence of pneumonia.

3.5  Effects of regional air pollutants on incidence 
of respiratory diseases

The AIRs of the four diseases caused by an increased 
per-unit concentration of the three pollutants were 
estimated using Eqs. (1) and (2), with the data from the 
townships of Hualien County serving as the control. 
The concentrations of  PM2.5, ODO, and NMHC are in 
µg  m− 3, ppbv and ppmv, respectively, which are com-
monly used units in air quality monitoring for these 
three air pollutants. The annual incidence rate growth 
rate (AIGR) per 100,000 population per unit air pollut-
ant concentration increments was obtained from a plot 
of AIR versus year.

Table  1 lists the AIGRs and the minimum and maxi-
mum error estimates based on data from 2005 to 2019. 
The three air pollutants were associated with a positive 
AIGR for lung cancer in the urban, suburban, and rural 
subareas, with the highest AIGR being in the urban sub-
area. The AIGRs were similar for the three air pollutants 
in the suburban and rural subareas. The AIGRs for lung 
cancer caused by NMHC exposure were notably high in 
the three subareas, with the urban AIGR being approxi-
mately twice as high as those of the suburban and rural 
subareas. The minimum and maximum error estimates of 
AIRs were the same as those of the AIGRs, with higher 
AIGRs having higher minimum and maximum 95% con-
fidence intervals (95% CIs) for the AIR.

The areas in which the three air pollutants caused the 
largest increase in COPD AIGR, in descending order, 
were urban, suburban, and rural, which was the same 
result as that for the lung cancer AIGRs. The ratios of the 
AIGRs of  PM2.5, ODO, and NMHC between the urban 
and suburban subareas were approximately 2.01, 1.21, 
and 2, respectively. The AIGRs of COPD were greater 
than those of lung cancer in the urban and suburban sub-
areas for all three air pollutants, especially in the urban 
subarea. These results demonstrate that COPD caused 
through exposure to the three air pollutants in the urban 
and suburban subareas warrants immediate attention. 
The order of the minimum and maximum 95% CIs of 
the AIRs for the three subareas was the same as those 
of the AIGRs. The minimum and maximum error esti-
mates increased proportionally with AIGR. A compari-
son of the COPD and lung cancer AIGRs revealed that 
the ratios of the COPD AIGRs to the lung cancer AIGRs 



Page 9 of 16Liang et al. Sustainable Environment Research            (2023) 33:1  

were 33.09, 33.66, and 3.7 in the urban, suburban, and 
rural subareas, respectively. This result indicates that the 
effect of NMHC on the COPD AIGRs was significantly 
stronger than that on the lung cancer AIGRs.

The three air pollutants caused positive increases 
in the asthma AIGRs in the three subareas, except for 
 PM2.5 in the rural subarea. The areas with the highest 
asthma AIGRs associated with the three air pollutants, in 
descending order, were urban, suburban, and rural, which 
was the same result as that for the lung cancer and COPD 
AIGRs. NMHC strongly affected the asthma AIGRs in 

the three subareas, but the effect was slightly weaker than 
that on the COPD AIGRs. The strength of the effect of 
NMHC on lung cancer, COPD, and asthma was signifi-
cantly and positively correlated with the degree of urban-
ization of a region. The high levels of NMHC may be 
attributable to the higher number of vehicles, the greater 
amount of vehicle exhaust emissions, and the heavier 
traffic flow in the urban subarea. The order of the mini-
mum and maximum 95% CIs of the AIRs for the three 
subareas was the same as that of the AIGRs.

Fig. 8 Spatiotemporal distribution of incidence of the four respiratory diseases in townships of study area from 2005 to 2019. The white and black 
lines are the urban and suburban boundaries, respectively
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Pneumonia is an acute lung infection resulting from 
bacteria, viruses, mycoplasmas, and fungus. Air pollu-
tion can weaken the immune function of the respiratory 
system, increasing susceptibility to pneumonia [34]. The 
areas in which the three air pollutants had the strongest 
effects on pneumonia AIGRs, in descending order, were 
rural, suburban, and urban, which is the opposite pattern 
to those of the lung cancer, COPD, and asthma AIGRs 
(Table 1). However, the differences in the effects among 
the subareas were nonsignificant. This was also the same 
order for the AIGRs of the other diseases: NMHC >  PM2.5 
> ODO.

3.6  Comparison of the effects of regional air pollutants 
on respiratory diseases

Because the scale and variable ranges of the three air 
pollutants differed, the AIGRs of the three pollutants 
(Table  1) could not be directly used to compare their 
effects on the four diseases. Therefore, the AIGRs were 

converted into a new parameter independent of concen-
tration and variable ranges. This study used potential 
AIGR (PAIGR) per 100,000 population to solve this prob-
lem. The concentration-independent variable interval of 
each air pollutant was the difference between the highest 
and lowest values (Hualien) for annual average air pol-
lutants, which is the maximum variation in air pollutant 
concentration. PAIGR per one hundred thousand popu-
lation for air pollutant i in zone j in terms of the ratio of 
the AIGR to variable interval VI is expressed by the fol-
lowing equation:

where PAIGR is independent of the air pollutant 
concentration.

Box-whisker plots of the annual concentrations of the 
three air pollutants in the urban, suburban, and rural 
subareas and in Hualien (control area) between 2005 

(4)PAIGRij = AIGRij × VIi

Table 1 Summary of AIGE per 100,000 population per unit air pollutant concentration increments using data from 2005 to 2019

The numbers in parentheses are the minimum and maximum error estimates of yearly AIR from 2005 to2019

Air pollutants Urban Suburban Rural

Lung cancer

  PM2.5 0.1 0.1 0.1

(‑0.25 − 0.47; ‑0.20 − 1.86) (‑0.1 − 0.6; ‑0.7 − 3.5) (‑0.1 − 0.7; ‑2.2 − 11.0)

 ODO 0.1 0.0 0.0

(0.10 − 0.76; 0.01 − 1.35) (0.0 − 0.6; ‑0.2 − 1.1) (‑0.6 − 0.2; ‑0.3 − 1.1)

 NMHC 14 7 8

(‑41.9 − 56.1; 15.8 − 317.1) (‑64.0 − 27.4; ‑40.8 − 264.2) (‑71.2 − 25.4; ‑82.0 − 206.4)

COPD

  PM2.5 1.8 0.9 0.0

(3.2 − 25.4; 19.6 − 68.2) (‑1.6 − 14.4; ‑1.5 − 127.4) (‑10.3 − 5.2; ‑138.5 − 118.3)

 ODO 0.5 0.4 0.2

(13.5 − 44.5; 21.0 − 65.0) (9.6 − 38.4; 16.0 − 55.3) (‑15.3 − 23.9; ‑18.6 − 31.1)

 NMHC 478 236 28

(1716.5 − 6247.4; 5900.5 − 17,881.6) (916.0 − 4396.3; 1882.2 − 10,734.4) (‑1099.8 − 2423.1; ‑3568.9 − 3728.4)

Asthma

  PM2.5 1.3 0.7 ‑0.1

(‑0.9 − 19.7; ‑3.1 − 41.9) (‑4.8 − 10.5; ‑5.8 − 116.8) (‑11.6 − 3.5; ‑158.0 − 109.0)

 ODO 0.4 0.4 0.2

(5.9 − 40.6; 12.2 − 55.0) (3.3 − 35.3; 9.6 − 49.0) (‑19.7 − 22.2; ‑17.1 − 32.0)

 NMHC 366 189 20

(763.2 − 5507.7; 3460.3 − 15,125.4) (306.5 − 3921.1; 1177.4 − 9495.0) (‑1143.9 − 2599.7; ‑3858.9 − 3157.3)

Pneumonia

  PM2.5 0.4 0.5 0.6

(‑6.2 − ‑0.3; ‑6.7 − 16.5) (‑3.8 − 2.6; ‑9.9 − 35.0) (0.3 − 5.5; ‑89.3 − 112.5)

 ODO 0.2 0.3 0.2

(‑3.5 − 1.6; ‑8.0 − 4.2) (‑3.4 − 2.2; ‑7.0 − 5.5) (‑5.8 − 1.1; ‑2.3 − 11.8)

 NMHC 44 49 69

(‑718.0 − 45.8; ‑1273.0 − 1976.9) (‑535.9 − 269.3; ‑1349.5 − 1410.4) (‑409.5 − 410.9; ‑359.9 − 2454.1)
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and 2019 are presented in Fig. 9; VI in the subareas was 
obtained using these results. VI for  PM2.5, ODO, and 
NMHC was 27 µg  m−3, 15 ppb, and 0.2 ppm, respectively.

Because PAIGR is a relative quantity independent 
of the concentration (or scale) of each air pollutant, it 
can be used to compare the effects of the three pollut-
ants on a disease. Table  2 lists the PAIGRs per 100,000 
population for the four diseases associated with expo-
sure to the three air pollutants based on data from 2005 
to 2019. The air pollutants with the strongest effects on 
lung cancer PAIGR, in descending order, were NMHC, 
 PM2.5, and ODO, with the urban subarea being most 
affected. For the lung cancer PAIGRs in the urban sub-
area, the ratio of  PM2.5 to ODO to NMHC was approxi-
mately 19:1:289. The areas in which the air pollutants 
had the strongest effects on COPD PAIGR, in descend-
ing order, were urban, suburban, and rural. The effect of 
NMHC on the COPD PAIGRs was considerable in each 
subarea. The ratios of  PM2.5 to ODO to NMHC in the 
urban, suburban, and rural subareas were approximately 
3.5:1:920, 2:1:550, and 0:1:166, respectively. The areas in 
which the pollutants had the strongest effects on asthma 
PAIGR, in descending order, were urban, suburban, and 
rural. NMHC had the strongest effect on asthma in the 
urban subarea. The areas in which the pollutants had 
the strongest effects on pneumonia PAIGR, in descend-
ing order, were urban, suburban, and rural. The ratios of 
 PM2.5 to ODO to NMHC for the urban, suburban, and 
rural subareas were approximately 2.9:1:291, 1.8:1:163, 
and 2.5:1:286, respectively.

NMHC had the most harmful effects, followed by  PM2.5. 
The increases in all-cause mortality of lung cancer, COPD, 
and asthma were due to long-term air pollutant exposure. 
The study area is a metropolitan basin with a population 
of 4.4  million, and about half of the population (approxi-
mately 2.27  million people) lives in the urban subarea. 
Therefore, this area contains the most vehicles, which emit 

Fig. 9 Box‑whisker plots of annual concentrations of the three air pollutants in (a) Urban, (b) Suburban, (c) Rural, and (d) Hualien (control area) from 
2005 to 2019

Table 2 Summary of PAIGE per 100,000 population obtained by 
Eq. (2) using data of 2005−2019

Air pollutants Urban Suburban Rural

Lung cancer

  PM2.5 0.95 0.05 0.06

 ODO 0.05 0.04 0.04

 NMHC 14 7 8

COPD

  PM2.5 1.81 0.90 0.00

 ODO 0.52 0.43 0.17

 NMHC 478 236 28

Asthma

  PM2.5 1.28 0.66 ‑0.05

 ODO 0.04 0.36 0.15

 NMHC 366 189 20

Pneumonia

  PM2.5 0.43 0.54 0.61

 ODO 0.15 0.30 0.24

 NMHC 44 49 69
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large amounts of NMHC (Figs. 3 and 4c). This explains why 
the effects of the three air pollutants on the three chronic 
diseases were strongest in the urban subarea. The effects of 
the three air pollutants on acute pneumonia differed little 
among the urban, suburban, and rural subareas.

3.7  Effects of the fifteen factors on regional incidence
The effects of air quality, point source, line source, area 
source, and socioeconomic status on regional incidence 
were estimated using the multivariate linear regression 
module of SPSS. Air quality comprised the ambient con-
centrations of  PM2.5, ODO, and NMHC; the point, line, 
and area sources comprised the emissions of  PM2.5,  NOx, 
and NMHC; socioeconomic status comprised population 
density, salary, and medical labor force.

3.7.1  Lung cancer
The multivariate regression coefficients for the effects of 
the 15 factors on the incidence of lung cancer are listed in 
Table 3. The correlations of the 15 factors with lung can-
cer incidence differed significantly among the subareas, 
especially in terms of the positive and negative correla-
tions. Thus, each of the 15 factors played distinct roles in 
the subareas. Some independent variables (factors) in the 
urban subarea were excluded in the statistical estimation 
because they did not contribute significantly to the R2 
values when R2 was 1. The results indicate that β1, γ1, 𝜉2, 
and 𝜆3 had positive correlation coefficients with the inci-
dence of lung cancer and that the rest of the factors had 
negative correlation coefficients or were excluded. The 
greatest positive and negative correlation coefficients, 
in descending order, were those of γ1, 𝜆3, 𝜉2, and β1 and 
those of β3, 𝜉1, 𝜉3, γ3, 𝜆2, and 𝜆1, respectively.  PM2.5 from 
point sources had a coefficient of 2.35, which was more 
than 2.6 times the coefficients of other factors and this 
merits attention.

In the suburban subarea, the increase in incidence 
resulting from  NOx from point sources was large, with a 
coefficient more than 5.1 times greater than those of the 
other factors. The main point sources of  NOx were mostly 
located in the suburban subarea, with a few located in 
the urban subarea (Fig.  4b). The suburban subarea had 
the largest distribution of ambient ODO (Fig.  7b). The 
marked increase in the incidence of lung cancer may be 
attributable to high  NOx emissions from point sources 
in this subarea. Notably, the maximum reduction factor 
of incidence was observed for  PM2.5 emitted from point 
sources. However, a high ambient  PM2.5 concentration 
was not observed in the suburban subarea, and the  PM2.5 
concentration in the study area decreased significantly 
and rapidly, especially in the suburban subarea (Fig. 7a).

A high ambient  PM2.5 concentration was noted in the 
rural subarea. The results demonstrate that the  PM2.5 
emitted from line sources had the highest effect on the 
incidence rate increase in rural areas at more than 7.2 
times that of other factors (Fig. 6a). The ambient NMHC 
concentration in the rural subarea was lower than that in 
the other two subareas, possibly because of the NMHC 
factors in all aspects of the rural subarea except for air 
quality being negatively correlated. Factors 𝜆3, 𝜆2, and 𝜆1 
were positively correlated with lung cancer in the urban, 
suburban, and rural subareas, respectively. The rest of 
the factors had low negative correlation coefficients. The 
regional medical labor force is dependent on the sup-
ply and demand of resources for treating diseases; the 
positive correlation coefficient for medical manpower 
(𝜆3 = 1.016) indicates high demand in the urban subarea.

3.7.2  COPD
Table  4 lists the multivariate regression coefficients for 
the effects of the 15 factors on the incidence of COPD. 
As with lung cancer incidence, when R2 was 1, the SPSS 

Table 3 Summary of the multivariate regression coefficients of 
15 factors in the incidences of lung cancer

* An independent variable that was excluded by SPSS statistical estimation 
when R2 = 1

** The p-value is infinitely small

Coefficients Urban Suburban Rural

Constant coefficient, α0 0.00 0.00 0.00

Air quality aspect

  PM2.5, β1 0.69 ‑0.16 ‑0.52

 ODO, β2 ‑* 0.07 ‑0.39

 NMHC, β3 ‑1.60 0.35 0.68

Point source aspect

  PM2.5, γ1 2.35 ‑11.17 ‑0.11

  NOx, γ2 ‑ 10.99 0.57

 NMHC, γ3 ‑1.20 0.44 ‑0.66

Line source aspect

  PM2.5, δ1 ‑ ‑0.21 4.92

  NOx, δ2 ‑ ‑0.55 ‑3.35

 NMHC, δ3 ‑ 2.15 ‑1.94

Area source aspect

  PM2.5, 𝜉1 ‑1.52 0.44 0.45

  NOx, 𝜉2 0.90 ‑1.73 0.35

 NMHC, 𝜉3 ‑1.34 ‑0.47 ‑0.11

Social economics aspect

 Population density, 𝜆1 ‑0.15 ‑0.25 0.12

 Salary, 𝜆2 ‑0.53 0.07 ‑0.78

 Medical manpower, 𝜆3 1.02 ‑0.14 ‑0.22

 R‑squared 1 0.90 0.87

 p‑values ‑** 0.00 0.00
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statistical estimates excluded some independent variables 
(factors) for the urban subarea. Factors β1, γ1, and 𝜉2 were 
the three main positively correlated factors for the urban 
subarea, and factor 𝜆3 was a minor positively correlated 
factor (Table 4). Factors γ3, 𝜉1, and 𝜆1 had high negative 
correlation coefficients, especially factor 𝜉1, which had 
the highest, −2.49.

Most of the factors were positively associated with 
the incidence of COPD in the suburban subarea. The 
results shows that the values of γ2 (5.01) and δ2 (4.82) 
indicating these two factors in the suburban subarea 
were main causes of the high COPD incidence. In the 
rural subarea, nine factors were negatively associated 
with COPD incidence, particularly factor δ1, which had 
the highest coefficient, − 4.46. δ2 and δ3 were the two 
main causes of the high COPD incidence in the rural 
subarea. For the socioeconomic aspect, the factors 𝜆3 in 
the three subareas and 𝜆2 in the suburban and rural sub-
areas exhibited weak positive correlations with COPD 
incidence.

3.7.3  Asthma
The multivariate regression coefficients for the effects 
of the 15 factors on the incidence of asthma are listed 
in Table 5. A comparison of the results (Tables 4 and 5) 
revealed that the 15 factors exhibited the same positive 
and negative relationships with the incidence of both 
COPD and asthma, except for medical labor force 𝜆3 in 
the urban subarea. This result may be attributable to 
both COPD and asthma being chronic respiratory dis-
eases with similar outcomes in the study area. For air 
quality and point, line, and area sources, the ratios of 
asthma incidence to COPD incidence in the urban, sub-
urban, and rural subareas ranged from 0.70 to 1.03 (aver-
age = 0.91), 0.54 to 1.06 (average = 0.95), and 0.55 to 1.35 
(average = 1.03), respectively. This result indicates that the 
contributions of the four aspects to the incidences of both 
COPD and asthma were similar in the three subareas. For 
the socioeconomic aspect, the ratios of asthma incidence 
to COPD incidence in the urban, suburban, and rural sub-
areas ranged from − 0.75 to 1.01 (average = 0.40), 0.94 to 

Table 4 Summary of the multivariate regression coefficients of 
15 factors for COPD

*  An independent variable that was excluded by SPSS statistical estimation 
when R2 = 1
**  The p-value approaches zero

Coefficients Urban Suburban Rural

Constant coefficient, α0 ‑0.05 0.01 0.02

Air quality aspect

  PM2.5, β1 2.56 0.17 ‑0.16

 ODO, β2 ‑* 0.08 ‑0.27

 NMHC, β3 ‑0.55 0.07 ‑0.14

Point source aspect

  PM2.5, γ1 1.98 ‑5.12 1.04

  NOx, γ2 ‑ 5.01 ‑0.92

 NMHC, γ3 ‑1.47 ‑0.21 ‑0.67

Line source aspect

  PM2.5, δ1 ‑ ‑9.90 ‑4.46

  NOx, δ2 ‑ 4.82 3.36

 NMHC, δ3 ‑ 7.44 1.07

Area source aspect

  PM2.5, 𝜉1 ‑2.49 0.30 0.52

  NOx, 𝜉2 1.64 ‑2.89 ‑0.72

 NMHC, 𝜉3 ‑0.43 0.19 ‑0.10

Social economics aspect

 Population density, 𝜆1 ‑1.14 ‑0.39 ‑0.02

 Salary, 𝜆2 ‑0.39 0.09 0.22

 Medical manpower, 𝜆3 0.03 0.18 0.10

 R‑squared 1 0.901 0.753

 p‑values ‑** 0.003 0.063

Table 5 Summary of the multivariate regression coefficients of 
five aspects for asthma

*  An independent variable that was excluded by SPSS statistical estimation 
when R2 = 1
**  The p-value approaches zero

Coefficients Urban Suburban Rural

Constant coefficient, α0 ‑0.05 0.01 0.03

Air quality aspect

  PM2.5, β1 2.64 0.17 ‑0.15

 ODO, β2 ‑* 0.05 ‑0.36

 NMHC, β3 ‑0.43 0.05 ‑0.17

Point source aspect

  PM2.5, γ1 1.90 ‑5.06 1.01

  NOx, γ2 ‑ 4.95 ‑0.90

 NMHC, γ3 ‑1.47 ‑0.23 ‑0.67

Line source aspect

  PM2.5, δ1 ‑ ‑9.67 ‑3.65

  NOx, δ2 ‑ 4.68 2.95

 NMHC, δ3 ‑ 7.32 0.59

Area source aspect

  PM2.5, 𝜉1 ‑2.51 0.28 0.54

  NOx, 𝜉2 1.66 ‑2.85 ‑0.73

 NMHC, 𝜉3 ‑0.30 0.18 ‑0.10

Social economics aspect

 Population density, 𝜆1 ‑1.15 ‑0.38 ‑0.04

 Salary, 𝜆2 ‑0.37 0.10 0.27

 Medical manpower, 𝜆3 ‑0.02 0.17 0.15

 R‑squared 1 0.898 0.769

 p‑values ‑** 0.004 0.047
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1.12 (average = 1.01), and 1.22 to 2.38 (average = 1.71), 
respectively.

3.7.4  Pneumonia
Table  6 lists the multivariate regression coefficients of 
the effects of the 15 factors on the incidence of COPD. 
The excluded independent variables (factors) for the 
urban subareas, processed through SPSS statistical esti-
mation, were the same as those for the three other res-
piratory diseases. The coefficients indicate considerable 
variation between the positive and negative relationships, 
especially for the suburban subarea. Factors β1, β3, and 
𝜉3 were positively correlated for the urban subarea, with 
coefficients higher than 3.2. Factor γ3 was slightly posi-
tively correlated, with coefficient of 0.22. Factors γ1 and 
𝜆1 had high negative correlation coefficients, especially 
factor γ1, which had the highest coefficient, − 1.72.

In the suburban subarea, factors γ2 and δ1 had the highest 
and second-highest positive correlations, with values of 13.9 
and 7.74, respectively. Factors γ1 and δ2 had the highest and 
second-highest negative correlations, with values of − 14.1 

and − 5.47, respectively. Therefore, the reduction of point-
source  NOx emissions and line-source  PM2.5 emissions 
prevented pneumonia infection. Factors δ2 and δ3 had the 
two highest positive correlations for the rural subarea, with 
values of 2.97 and 2.42, respectively. The value of factor δ1 
was − 5.59, which was the highest negative correlation coef-
ficient. These results indicate that the three factors of the 
line source aspect influenced the incidence of pneumonia. 
In the study area, two express highways and two freeways 
with heavy traffic flow are located in the rural subarea.

4  Discussion
The wind field in the study area exhibited northeast and 
southwest monsoon characteristics. The average annual 
wind speed was between 1 and 5 m  s−1 (frequency > 80%) 
between 2005 and 2019. The prevailing wind direction 
was not a major factor determining the distribution of 
air pollutants. The concentrations of the three pollutants 
decreased each year. The spatial distribution of  PM2.5 
in the three subareas was similar and not significantly 
affected by the local wind field. The spatial distributions 
of ODO and NMHC differed from that of  PM2.5, and the 
subareas with the highest concentrations, in descending 
order, were urban, suburban, and rural. This result may 
be explained by the fact that both ODO and NMHC are 
precursors of  PM2.5 (Fig.  7). In addition, the mountain 
barrier effect results in higher concentrations of air pol-
lutants in the surrounding areas.

The spatial distribution of the incidences of the four 
respiratory diseases was the same as that of  PM2.5, which 
gradually increased from north to south (Figs. 7 and 8). 
The order of their spatial distributions in subareas was 
rural > suburban > urban, which was opposite to those 
of ODO and NMHC. A reduction in the precursors 
increased  PM2.5 concentrations, thereby increasing the 
incidence of respiratory disease.

The panel data regression model was used to evaluate 
the AIRs of the four respiratory diseases. The change in 
AIGR was obtained by plotting AIR by years. All three 
air pollutants lead to positive AIGRs for all four dis-
eases in the three subareas, except for  PM2.5, which was 
associated with a negative asthma AIGR in the rural 
subarea. The areas with the highest AIGRs for lung 
cancer, COPD, and asthma, in descending order, were 
urban, suburban, and rural. The areas with the high-
est AIGRs for pneumonia, in descending order, were 
rural, suburban, and urban. The air pollutants that most 
strongly affected the AIGRs of the four respiratory dis-
eases, in descending order, were NMHC,  PM2.5, and 
ODO, which may be attributable to the effects of high 
numbers of vehicles, high amounts of exhaust emis-
sions, and heavy traffic flow in the urban subarea.

Table 6 Summary of the multivariate regression coefficients of 
five aspects for pneumonia

*  An independent variable that was excluded by SPSS statistical estimation 
when R2 = 1
**  The p-value approaches zero

Coefficients Urban Suburban Rural

Constant coefficient, α0 ‑0.13 0.03 0.02

Air quality aspect

  PM2.5, β1 3.20 ‑0.58 ‑0.24

 ODO, β2 ‑* ‑0.06 ‑0.00

 NMHC, β3 3.68 0.04 0.12

Point source aspect

  PM2.5, γ1 ‑1.72 ‑14.07 ‑0.35

  NOx, γ2 ‑ 13.94 ‑0.13

 NMHC, γ3 0.22 0.09 0.19

Line source aspect

  PM2.5, δ1 ‑ 7.74 ‑5.59

  NOx, δ2 ‑ ‑5.47 2.97

 NMHC, δ3 ‑ ‑2.32 2.42

Area source aspect

  PM2.5, 𝜉1 ‑0.48 ‑0.56 0.10

  NOx, 𝜉2 0.83 0.54 ‑0.02

 NMHC, 𝜉3 3.60 ‑0.03 ‑0.11

Social economics aspect

 Population density, 𝜆1 ‑1.24 ‑0.27 ‑0.01

 Salary, 𝜆2 ‑0.59 ‑0.36 0.29

 Medical manpower, 𝜆3 0.18 0.68 ‑0.65

 R‑squared 1 0.687 0.830

 p‑values ‑** 0.276 0.011
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This study developed a new parameter, PAIGR, and 
its estimation formula to quantitatively compare the 
effects of the three air pollutants on the respiratory dis-
eases. The results shows that NMHC is the most seri-
ous on the four respiratory diseases, followed by  PM2.5. 
Therefore, the impact from NMHC was significant and 
cannot be ignored, especially in urban subarea.

The 15 factors had positive or negative correlations 
with each disease. The socioeconomic factors (i.e., pop-
ulation density, salary, and medical labor force) had low 
coefficients for the positive and negative correlations 
with incidence of the four diseases, indicating that they 
have little effect on incidence.

5  Conclusion
The study area has serious air pollution problems 
because of its high industrial and population densi-
ties. The results indicate that ambient NMHC had the 
strongest effects on the incidence of respiratory dis-
eases, followed by those of ambient  PM2.5. The effect 
of ambient NMHC was significant and cannot be 
ignored, especially in the urban subarea. This study 
also used multivariate regression to assess the associa-
tion between the 15 factors of the five aspects and the 
incidences of the four respiratory diseases. The results 
revealed a favorable goodness of fit. They also indicated 
that the socioeconomic aspect had little effect on the 
disease incidences.
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