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Abstract 

Dynamic storage refers to groundwater storage that is sensitive to rainfall infiltration, streamflow generation, evapo‑
transpiration, and other variables involving groundwater gain or loss. It plays a crucial role in habitat maintenance and 
the mitigation of environmental impacts on regional hydrological behaviors. Dynamic storage can be separated into 
direct storage, which contributes to the river channel, and indirect storage, which is insensitive to streamflow. The 
combination of diverse approaches would provide an estimation of the two storage types. This study estimated opti‑
mal baseflow coefficients and direct storage in the wet and dry seasons using an analytical streamflow duration curve 
model in eight catchments of the Choushui River Basin from 2013 to 2017. The water balance approach was then 
combined to assess indirect storage for evaluating seasonal dynamic storage components. The model applicability 
for each catchment of the Choushui River Basin in the wet and dry seasons was assessed using the similarity between 
observed and simulated flow duration curves, namely Kolmogorov–Smirnov distance. We also applied it to assess the 
performance difference between model and streamflow recession analysis, which is typically used to estimate base‑
flow coefficients. The results demonstrated that seasonal differences in baseflow coefficients were related to catch‑
ment characteristics as well as the aquifer extent through which groundwater flows. The model utilizing maximum 
likelihood estimation exhibited superior performance than streamflow recession analysis and was highly applicable 
in our study area in wet and dry seasons. Dynamic storage components demonstrated a considerable difference in 
the additional groundwater storage between dry and wet seasons and a loss of direct storage was observed in most 
catchments during the dry season.
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1 Introduction
Groundwater resource management and quantification 
are restricted by monitoring challenges and invisibil-
ity of aquifers, causing groundwater overuse in several 
regions of the world [1]. Groundwater storage is not only 
a major factor in controlling baseflow physics and chem-
istry but also plays a role in regulating thickness of the 
vadose zone, ecological availability of water resources, 

and evapotranspiration. Previous studies have shown that 
larger storage capacity results in hydrological connec-
tivity and deep groundwater flow [2, 3]. Rihani et al. [4] 
mentioned that strong correlations of groundwater table 
with geomorphology, aquifer heterogeneity, vegetation 
type, and regional climate demonstrated that seasonal 
groundwater table changes are controlled by horizontal 
drainage of the channel and vertical loss from ground-
water. Thus, understanding the relationships between 
groundwater storage, hydrogeological structures, and 
climate patterns may help improve long-term hydrologi-
cal predictions under future climate scenarios. Exploring 
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groundwater storage response mechanisms is also vital 
for comprehending quality and quantity of groundwater, 
hydrogeological structures, and interactions with ecolog-
ical or human activities.

Hydrologists have pursued to identify physical attrib-
utes that sufficiently describe different basin hydrologi-
cal behaviors to avoid high parameterization and model 
uniqueness issues [5]. This has resulted in the develop-
ment of storage–discharge behavior, which describes 
the groundwater discharge process from aquifers of 
catchment or mountainous areas to the river channel 
[6]. Streamflow recession analysis (REC), proposed by 
Brutsaert and Nieber [7], has been widely adopted to 
explore the storage–discharge relationship and to esti-
mate groundwater storage [8–10]. Based on the assump-
tion that groundwater discharge dominates streamflow 
during the long-term dry period, the storage–discharge 
relationship can be determined by data selection and fit-
ting. Owing to regional climatic conditions and statisti-
cal rationality, several different combinations of low-flow 
selection criteria with different levels of rigor [11, 12] and 
parameter fitting [13, 14] have been developed utilizing 
this technique. Jachens et al. [15] suggested that, if reces-
sion analysis is integrated with interdisciplinary science, 
a representative method must still be chosen to establish 
future development. The analytical flow duration curve 
(FDC) model developed by Botter et  al. [16–18] is pre-
sumed to be a recession analysis alternative [19]. This 
model extends the relationship between stochastic rain-
fall and soil water content to the streamflow generation 
process, deriving an analytical expression with baseflow 
coefficients for the daily streamflow probability distribu-
tion. The advantage of this method compared with the 
REC is its availability for all streamflow data for at least 
one year. It has also been applied in many regions with 
different hydrological and climatic conditions [20–22].

Non-uniqueness of the storage–discharge function 
makes it challenging to elucidate physical processes, 
and there may be a huge number of seasonal groundwa-
ter storage changes that are unlinked to discharge from 
aquifers to channel. Conceptual hydrological models 
also usually characterize these storages as different stor-
age components, which are assumed to be important 
factors in catchment discharge response and immediate 
or delayed phenomena of the storage–discharge rela-
tionship [23]. Estimating storage components and their 
temporal changes can offer more insights into catch-
ment hydrological processes and enhance hydrological 
simulation and prediction. Additionally, due to different 
definitions of groundwater storage estimated using dif-
ferent approaches, a combination of these methods can 
help us comprehend the storage components [24]. Dralle 
et al. [25] proposed that total dynamic storage (ST) could 

be separated into two components: direct storage (Sd), 
which contributes to streamflow, and indirect storage 
(Si), which is less sensitive to streamflow. Their results 
indicate that aquifer properties control the ST composi-
tion. This will help predict the impact of climate change 
on groundwater evaporation and promote the considera-
tion of groundwater processes in hydrological models.

The aim of this study was to use the analytical FDC 
model in combination with the water balance method 
to compute seasonal baseflow coefficients for quantify-
ing dynamic storage components in eight catchments 
of the Choushui River Basin. Our study also explored 
model applicability of each catchment in wet and dry 
seasons using the Kolmogorov–Smirnov distance (cKS). 
It represents the maximum distance between the simu-
lated and observed FDC at a specific streamflow and 
could be appropriate for assessing the similarity between 
cumulative distribution functions. Although the model 
is available for all streamflow data, the observed FDC 
still need enough data to constitute the streamflow dis-
tribution characteristics for parameter fitting and model 
applicability assessment. To address the representative-
ness of FDC, this study used five years of streamflow 
data from 2013 to 2017 in each catchment for analysis. 
We also ascertained the differences in the ratio between 
direct and indirect storage owing to seasonal rainfall. The 
results of this study will help enhance our understanding 
of catchment storage response mechanism and the rela-
tionship between seasonal rainfall differences and aquifer 
properties.

2  Materials and methods
2.1  Study area
The Choushui River Basin, located in the central region 
of Taiwan (Fig.  1). The Choushui River originates from 
the main and east peak of the Hehuan Mountain and 
flows through the Central Range to the western plain 
area. The length and average slope of the main chan-
nel are 186.6 km and 31.21°, respectively. The drainage 
area is approximately 3157  km2, making Choushui River 
basin the second largest drainage basin in Taiwan, with 
an annual runoff of approximately 6.1 billion  m3  yr− 1. 
Southwest monsoon and typhoons bring rainfall dur-
ing the wet season from May to October. The dry sea-
son occurs from November to April, as the northeast 
monsoon is blocked by the Central Range. Rainfall dis-
tribution is also affected by topography, declining from 
mountainous areas to plains. The average annual rainfall 
in mountainous areas is more than 2200 mm and in plain 
areas is approximately 1400 mm [26].

The Chuoshui River Basin has a unique geological envi-
ronment with easily broken and weathered lithologies 
(Fig. 2) [27]. The downstream and midstream are divided 
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by the mountain pass (located at the Chun-Yun Bridge, 
CYB, gauging station), and the downstream predomi-
nantly comprises alluvial deposits. The midstream range 
extends from the mountain pass to mainstream conflu-
ence with the Chenyoulan River (where the Nei-Mao-Pu, 
NMP, gauging is located). Most riverbanks in the mid-
stream contain alluvial deposits, and the overall regional 
lithology primarily comprises sandstone, shale, and mud-
stone. Gravel, clay/mud, and sand are present near the 
mountain pass. The upstream lithology is mostly argillite, 
slate, and phyllite; quartzite and coaly shale appear near 

the midstream. Metamorphism grade of the basin lithol-
ogy increases from west to east owing to the direction of 
orogenic movement.

2.2  Data
To focus on the influence of seasonal and catchment 
scales on model performance and dynamic storage 
components estimation, we chose eight streamflow 
gauging stations in the Chuoshui River Basin. The 
geographic and hydrological information of each 
catchment was depicted in Tables  1 and 2. Baseflow 

Fig. 1 Spatial distribution of gauging stations and catchments in the Chuoshui River Basin
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coefficients and dynamic storage components in the 
dry and wet seasons were evaluated from the begin-
ning of the wet season from 2013 to 2017. The spatial 
distributions of catchments and streamflow gauging 
stations are depicted in Fig.  1. Daily grid rainfall data 
were acquired from the Taiwan Climate Change Pro-
jection Information and Adaptation Knowledge Plat-
form [28]. To estimate the water balance and effective 
rainfall, daily grid evapotranspiration and interception 

loss data were obtained from the Global Land Evapo-
ration Amsterdam model dataset [29]. Grid data with 
a resolution of 0.25° × 0.25° were evaluated utilizing a 
series of estimation algorithms, including different land 
evaporation compositions [30]. Interception loss was 
calculated using the Gash analytical model, and actual 
evapotranspiration was converted from potential evap-
otranspiration based on observations of the microwave 
vegetation optical depth and root-zone soil moisture.

Fig. 2 Spatial distribution of lithology in the Chuoshui River Basin
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2.3  Analytical FDC model
The analytical FDC model was developed by incorpo-
rating the rainfall–soil moisture equation proposed by 
Rodriguez-Iturbe et al. [31] into a model framework with 
rainfall-driven streamflow probability attributes [16, 17]. 
This model assumes that streamflow is generated from 
groundwater discharge and follows a non-linear recession 
behavior when a sequence of rainfall events increases soil 
moisture beyond the retention capacity [18]. Based on 
this assumption, Rodriguez-Iturbe et  al. [31] described 
probabilistic dynamics of the average soil moisture utiliz-
ing a stochastic differential equation:

where ds(t)/dt is the time derivative of the soil mois-
ture s (mm), −ρ [s(t)] is the soil moisture loss function 
resulting from evapotranspiration, surface runoff, and 
deep percolation, and ξ(t) is the stochastic instantane-
ous increase caused by rainfall infiltration. Botter et  al. 
[18] assumed that daily rainfall is a stochastic forcing 
of groundwater discharge generation, and applied the 
assumption of a non-linear recession process of daily 
streamflow at the catchment scale. The stochastic differ-
ential equation can be expressed as follows:

where Q (mm  d− 1) is the daily streamflow, a and b 
are the baseflow coefficients depending on the catch-
ment characteristics, and ξ”(t) represents a stochastic 
input process wherein a rainfall event provides sufficient 
water to generate the streamflow. The marked Poisson 
process with a rainfall–streamflow frequency λ  (d− 1) 
and the exponentially distributed rainfall depth with an 
average effective rainfall (which is the observed rainfall 
minus interception loss) on rainy days α (mm  d− 1) are 

(1)
ds(t)

dt
= −ρ[s(t)]+ ξ(t)

(2)
dQ(t)

dt
= −aQ(t)b + ξ”(t)

assumed as the catchment rainfall input. Botter et al. [18] 
described the model framework as the steady-state sto-
chastic distribution function of the daily streamflow:

where C is a normalizing constant; a rainfall–stream-
flow frequency λ  (d− 1) can be obtained from the rela-
tionship between the average effective daily rainfall and 
average streamflow, Q  (mm  d− 1) [32], which is calcu-
lated as follows:

2.4  Parameter fitting
Similar to Santos et al. [19], in this study, we used maxi-
mum likelihood estimation (MLE) to calculate the base-
flow coefficients a and b, providing optimal parameter 
fitting of the probability model for the observed data. 
Maximum likelihood function represents the joint proba-
bility of all observed data and can be expressed as follows:

where N is the number of data points and p(Q; b, a) is 
the probability density. Santos et al. [19] applied an ana-
lytical FDC model for dry seasons. Although the model 
performance is reduced with temporal scales from 5 to 
1 year, it still simulates FDC better than REC. Addition-
ally, all the observed data can be used in the model with-
out data selection, which is a common process in REC.

To determine differences in the estimated baseflow 
coefficients for simulating the FDC, we utilized REC 
for baseflow coefficient estimation. REC shows that 

(3)

p(Q, t → ∞) = C

{

1

Qb
exp

[

−Q2−b

�a(2 − b)
+

Q1−b
�

a(1 − b)

]}

(4)Q = �α

(5)L(b, a) =

N

i=1

p(Q; b, a)

Table 1 Geographic information in each gauge station of the Chuoshui River Basin in Taiwan

Gauging station Longitude (WGS84) Latitude (WGS84) Area  (km2) Slope (°) Elevation (m)

Chi‑Chou Bridge (CCB) 23°48′30″ N 120°28′5″ E 2974.7 35.8 1516.5

Chun‑Yun Bridge (CYB) 23°47′15″ N 120°38′11″ E 2906.3 36.3 1547.0

Yun‑Feng Bridge (YFB) 23°48′25″ N 120°50′27″ E 2098.9 39.3 1838.5

Bao‑Shih Bridge (BSB) 23°47′39″ N 120°54′51″ E 1542.4 39.9 1956.1

Long‑Men Bridge (LMB) 23°40′24″ N 120°39′53″ E 360.0 34.4 1137.9

Yen‑Ping Bridge (YPB) 23°46′45″ N 120°42′32″ E 86.5 28.3 815.6

Nei‑Mao‑Pu (NMP) 23°41′42″ N 120°51′4″ E 367.4 39.0 1716.1

Shui‑Li Bridge (SLB) 23°48′56″ N 120°51′17″ E 80.2 26.1 699.2



Page 6 of 15Huang and Yeh  Sustainable Environment Research           (2022) 32:49 

Ta
bl

e 
2 

H
yd

ro
lo

gi
ca

l i
nf

or
m

at
io

n 
in

 e
ac

h 
ga

ug
e 

st
at

io
n 

of
 th

e 
C

hu
os

hu
i R

iv
er

 B
as

in
 in

 T
ai

w
an

G
au

gi
ng

 s
ta

tio
n

A
nn

ua
l P

re
ci

pi
ta

tio
n 

(m
m

  d
−

 1
)

A
nn

ua
l R

un
off

 (m
m

  d
−

 1
)

A
nn

ua
l R

un
off

  (m
3   s−

 1
)

A
nn

ua
l B

as
efl

ow
 (m

m
  d

−
 1

)
A

nn
ua

l B
as

efl
ow

  (m
3   s−

 1
)

D
ry

 s
ea

so
n

W
et

 s
ea

so
n

D
ry

 s
ea

so
n

W
et

 s
ea

so
n

D
ry

 s
ea

so
n

W
et

 s
ea

so
n

D
ry

 s
ea

so
n

W
et

 s
ea

so
n

D
ry

 s
ea

so
n

W
et

 s
ea

so
n

C
hi

‑C
ho

u 
Br

id
ge

 (C
C

B)
45

2.
8

16
40

.1
14

7.
6

11
78

.8
50

81
.8

40
,5

85
.4

73
.0

33
8.

9
25

13
.3

11
,6

68
.1

C
hu

n‑
Yu

n 
Br

id
ge

 (C
YB

)
46

4.
6

16
63

.3
33

8.
2

11
83

.9
11

,3
76

.4
39

,8
24

.0
15

2.
8

37
9.

3
51

39
.9

12
,7

58
.9

Yu
n‑

Fe
ng

 B
rid

ge
 (Y

FB
)

50
3.

0
15

74
.6

40
0.

5
15

93
.4

97
29

.5
38

,7
08

.9
27

2.
5

78
5.

9
66

19
.9

19
,0

92
.1

Ba
o‑

Sh
ih

 B
rid

ge
 (B

SB
)

51
5.

9
14

98
.8

34
4.

3
11

65
.6

61
46

.4
20

,8
08

.0
24

3.
5

55
5.

8
43

46
.9

99
22

.0

Lo
ng

‑M
en

 B
rid

ge
 (L

M
B)

40
7.

6
23

07
.6

17
4.

0
20

13
.4

72
5.

0
83

89
.2

97
.2

47
0.

3
40

5.
0

19
59

.6

Ye
n‑

Pi
ng

 B
rid

ge
 (Y

PB
)

34
4.

2
17

59
.3

18
6.

8
19

82
.9

18
6.

9
19

84
.3

10
1.

7
72

8.
3

10
1.

8
72

8.
8

N
ei

‑M
ao

‑P
u 

(N
M

P)
60

4.
5

18
89

.6
51

6.
5

21
05

.2
21

96
.3

89
52

.0
33

6.
7

86
4.

3
14

31
.8

36
75

.3

Sh
ui

‑L
i B

rid
ge

 (S
LB

)
37

5.
4

17
10

.2
40

11
.1

92
19

.2
37

24
.2

85
59

.8
36

38
.8

75
62

.3
33

78
.5

70
21

.4



Page 7 of 15Huang and Yeh  Sustainable Environment Research           (2022) 32:49  

streamflow and its variation have a power-law rela-
tionship during recession period (−dQ/dt = aQb), 
characterizing the storage–discharge relationship 
through data fitting [7]. We selected individual reces-
sion events to conduct REC using the following cri-
teria: (1) at least five consecutive data points for the 
recession event; (2) removal of data points at which 
the flow variation was positive or zero; (3) removal of 
two and one data point at beginning and the end of 
all recession events, respectively; (4) removal of three 
data points after the data point was larger than 7% 
exceedance probability, as defined by the FDC; and (5) 
removal of singular points in the data series [33, 34]. 
Baseflow coefficients were obtained by fitting the indi-
vidual recession events using the linear least squares 
approach, and recession events with fitted b values < 3 
were selected to ensure that the recession belonged to 
the aquifer drainage stages mentioned by Arumi et al. 
[35]. The median of the fitted b values was taken as 
the fixed coefficient b to re-fit a value of each reces-
sion event. The median of the fitted a was considered 
as the representative value [13, 36]. Additionally, we 
counted the number of available recession events to 
explore REC application in catchments and the differ-
ence between dry and wet seasons.

2.5  Performance evaluation
The probability model can compute joint probability cor-
responding to all the observed data, and cumulative dis-
tribution function can then be obtained by integration. 
To evaluate performance of the analytical FDC model 
at seasonal and catchment scales, we used cKS to test the 
similarity between simulated and observed FDC. cKS is 
an important reference value for testing whether the data 
distribution comes from a specific reference distribution. 
This is the maximum distance between the cumulative 
distribution functions of the simulated and the observed 
streamflow (F(Q) and F(

∼

Q)). This value was calculated as 
follows:

A smaller cKS value indicates higher similarity between 
the cumulative distribution functions, indicating that the 
model has better performance. Previous studies have also 
applied this approach to evaluate the performance of dif-
ferent methods [11, 19, 22, 37]. However, it is only used to 
identify cumulative distribution function similarity, and 
its value has not been defined as a standard correspond-
ing to model performance. Therefore, we explored appli-
cability of the model to catchment scale and its difference 

(6)cKS = SUP
x

∣∣∣F
(
Q̃
)
− F(Q)

∣∣∣

in wet and dry seasons using the previous study results as 
a reference.

2.6  Catchment dynamic storage
Catchment dynamic storage can be regarded as 
groundwater storage in the unconfined aquifer, which 
is more easily affected by external factors. Groundwater 
discharge behaviors can be divided into Sd (mm) and 
Si (mm). Sd is the groundwater storage that contrib-
utes to the streamflow, whereas Si has little interaction 
with streamflow and changes through vertical gains or 
losses. Dralle et  al. [25] proposed the assumption that 
ST (mm) is the sum of Sd and Si, as depicted in Eq. (7):

where P represents the daily rainfall (mm  d− 1), ET 
is the daily evapotranspiration (mm  d− 1), and τ is the 
dummy integration variable. If rainfall, evapotranspira-
tion, and transfer between direct and indirect storage are 
relatively smaller than the streamflow during groundwa-
ter discharge process, the water balance will only com-
prise streamflow and groundwater storage changes, as 
depicted in Eq. (8):

Storage–discharge sensitivity function g(Q), which 
represents the change in direct storage corresponding 
to that in streamflow, can be derived as the relationship 
between streamflow, Q, and flow variation dQ/dt by 
substituting Eq. (8). Sd can be quantified by integrating 
the reciprocal of g(Q) using Eqs. (9) and (10).

Si can be estimated by subtracting Sd from ST. As it 
is impossible to determine boundary and condition of 
the catchment groundwater storage, we assumed that 
the initial total dynamic storage was 0. This helped us 
comprehend the proportion of different dynamic stor-
age components contributing to the total amount of 
dynamic storage and its temporal changes under vari-
ous seasonal wetness conditions.

(7)ST (t) = Sd + Si =

∫ t

0

(P − Q − ET )dτ

(8)
dSd

dt
≈ −Q

(9)g(Q) =
dQ

dSd
=

dQ/dt

dSd/dt
≈ −

dQ/dt

Q

∣∣∣∣
Q≫P, ET, R

(10)Sd =

∫
dSd =

∫ Q(t)

Q(0)

dQ

g(Q)
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3  Results and discussion
3.1  Baseflow coefficients
Herein, MLE was applied to fit the optimal baseflow coef-
ficients with an analytical FDC model in dry and wet 
seasons, and REC was performed to estimate the coeffi-
cients to compare their results and physical information. 
The relationship between baseflow coefficients was also 
explored to determine the spatial and seasonal differ-
ences. The results are presented in Table 3.

3.1.1  Estimated baseflow coefficients of two approaches
MLE results showed that the a and b ranges were 0.15–
2.04 and 1.01–2.54, respectively, in the dry season. In 
the wet season, a ranged from 0.09 to 1.15, and b from 
1.13 to 2.26. Except for BSB, LMB, and SLB (see Table 1 
for abbreviations) catchments, coefficient a was lower in 
the dry season. Coefficient b was higher in the dry sea-
son, except in BSB and SLB catchments. Most studies 
[10, 38–40] have reported that coefficient b represents 
catchment recession nonlinearity, which is related to the 
inclination of aquifer and other hydrogeological charac-
teristics. Bart and Hope [36] and Biswal and Kumar [41] 
found that coefficient a was related to antecedent catch-
ment wetness conditions and length of the drainage sys-
tem network. Coefficient a can be explicitly expressed as 
a function of the initial catchment storage, when coeffi-
cient b is assumed to be constant [42]. Our study did not 
observe a significant correlation between coefficient a 
and the average streamflow, which represents the catch-
ment wetness condition. However, in SLB catchment, 
where the average streamflow is one order of magnitude 
higher than that in other catchments, there was also a 
similar condition for coefficient a in both wet and dry 
seasons. This may be largely influenced by the obvious 
wetness condition differences. As SLB catchment encom-
passes the Ming-Tan, Ming-Hu, and Sun Moon Lake 
reservoirs, power plant operations in this region may 

be related to the reservoir drawdown process. Control 
of hydraulic structures on rivers may decrease the fre-
quency of low-flow events causing the model to misiden-
tify the faster recession with a high-flow event in the SLB 
catchment. Brutsaert [33] also suggested that a higher 
coefficient a indicates the faster recession process with 
fewer drainage days.

REC results showed a and b value ranges of 0.001–1.82 
and 1.11–2.86, respectively, in the dry season. During the 
wet season, the a values ranged from 0.005–0.12, and b 
values ranged from 1.76 to 2.36. Except for SLB, coeffi-
cient a in the dry season was higher than that in the wet 
season. Coefficient b was higher in CCB, YFB, NMP, 
and SLB in the dry season than in the wet season. Con-
trary to MLE results, only coefficient a demonstrated a 
significant seasonal difference, and the four mainstream 
catchments did not show a similar regional difference 
in the two coefficients. There was a lower average a and 
higher average b value in the REC than in the MLE. The 
catchment drainage process can be simply divided into 
short- and long-term states (b = 3 and b = 1.5, respec-
tively): b = 3 represents fast drainage from the transiently 
saturated aquifer post initial rainfall event, and b = 1.5 
represents slow drainage from the saturated aquifer post 
rainfall infiltration [35]. Our study found that most of the 
selected recession events were close to the short-term 
state (b = 3), resulting in a lower coefficient a. This indi-
cates that most of the selected recession events could not 
completely represent discharge behavior from the aqui-
fer. Additionally, the number of available recession events 
in dry and wet seasons indicated that there were less than 
10 recession samples in most of the catchments over the 
5-yr period analyzed (Fig.  3). Although the wet season 
had more recession events due to more rainfall events, 
the low number of available recession samples with the 
short-term state made it difficult to determine the aver-
age catchment discharge behavior. Faster hydrological 

Table 3 Baseflow coefficients with MLE and REC in dry and wet seasons

Catchment Dry season Wet season

MLE REC MLE REC

a b a b a b a b

CCB 0.51 1.60 1.82 2.75 0.61 1.37 0.12 1.76

CYB 0.20 1.94 0.17 1.11 0.50 1.56 0.12 2.18

YFB 0.15 2.54 0.04 2.86 0.23 1.78 0.02 2.36

BSB 0.11 1.80 0.03 1.79 0.09 2.26 0.03 2.12

LMB 0.43 2.28 0.05 1.83 0.35 1.55 0.02 1.99

YPB 0.42 1.43 0.45 2.07 0.43 1.41 0.02 2.30

NMP 0.15 1.82 0.01 2.27 0.28 1.51 0.01 2.19

SLB 2.04 1.01 0.001 2.66 1.15 1.13 0.01 2.15
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response in catchments with small area may also be the 
reason for discontinuity of recession events. Therefore, 
REC is more suitable for long-term analysis with suffi-
cient data.

3.1.2  Spatial and seasonal difference in baseflow coefficients
To explore spatial distribution of the baseflow coef-
ficients, we plotted the relationship between the MLE 
baseflow coefficients (Fig.  4). The results demonstrate a 
negative correlation between the baseflow coefficients 
in both wet and dry seasons. Although coefficient a can-
not be comparing owing to the difference in coefficient 
b, it still indicates that a depends on b. According to the 

coefficient characteristics mentioned above, the higher 
recession nonlinearity, the wetter the catchment. Among 
the four mainstream catchments (CCB, CYB, YFB, and 
BSB), there was a decrease in a and an increase in b from 
downstream to upstream during wet season. This dem-
onstrates that the baseflow coefficients changed with 
average slope and catchment elevation, and the tributary 
catchments also demonstrated a similar tendency. Spatial 
distribution of the baseflow coefficient is uneven during 
the dry season. Except for the results in BSB, baseflow 
coefficients in the mainstream catchments had a similar 
tendency to the wet season and had a higher variability 
among the tributary catchments during the dry season.

According to the spatial distribution of basin lithol-
ogy, hydraulic conductivity and specific yield theoreti-
cally increase from upstream to downstream, and the 
tributary catchments have a similar lithology, except for 
SLB. If the aquifer through which groundwater flows 
in the wet season is more extensive than that in the dry 
season, upstream baseflow coefficients in the wet season 
should reflect a lower groundwater discharge rate. This 
is consistent with the difference in coefficient a, and pre-
vious studies also depict that a lower a value leads to a 
lower recession rate [43, 44]. Therefore, seasonal differ-
ences may indicate that the groundwater discharge in dry 
seasons may be primarily derived from the aquifer with 
better drainage ability, signifying that discharge behavior 
also depends on the aquifer characteristics.

In most catchments, coefficient b had greater variabil-
ity than coefficient a between the dry and wet seasons. 
Faster recession during dry season was suggested to 
be caused by higher evapotranspiration from the shal-
low unconfined aquifer [45]. However, the response of 

Fig. 3 The number of selected recession events in dry and wet seasons from 2013 to 2017

Fig. 4 The relationship between baseflow coefficients a and b. Dry 
and wet seasons are indicated by red and blue symbols, respectively



Page 10 of 15Huang and Yeh  Sustainable Environment Research           (2022) 32:49 

coefficient b to rainfall infiltration was inconsistent with 
the catchment drainage process. Coefficient b in the wet 
season was lower than that in the dry season, rather than 
closer to b = 3. According to the comparison between 
REC and analytical FDC model reported by Santos et al. 
[19], the estimated baseflow coefficient b is more simi-
lar to the model result after removing short-term stage 
recession events. This comparison also indicates that the 
analytical FDC model provides results closer to the late-
state discharge process. Thus, short-term stage discharge, 
which is considered in REC after data selection, can be 
avoided.

3.2  Performance evaluation
This study utilized analytical FDC model to compute the 
joint probability corresponding to each streamflow data 
point, and the simulated FDC was obtained by integrat-
ing the probability density function. The observed and 
simulated FDCs for each catchment in dry and wet sea-
sons are depicted in Figs. 5 and 6, respectively. The MLE 
results demonstrated that the streamflow in dry season 

was lower than that in the wet season, and the overall 
simulated FDCs were similar to the observed results, 
except for SLB in the dry season. This may have been 
caused by the sporadic low-flow probability distribu-
tion due to the higher streamflow caused by power plant 
operation mentioned above. This was also the reason that 
the lower coefficient b and higher coefficient a in SLB 
(Fig.  4) showed hydrological characteristics dissimilar 
to those of the other catchments. Simulations from the 
baseflow coefficients estimated by REC were evidently 
worse than those estimated by MLE. In REC results, low 
streamflow corresponded to lower probability, and high 
streamflow corresponded to higher probability. This 
was predominantly related to recession events with high 
streamflow owing to data selection. To comprehend the 
influence of baseflow coefficients on FDC, we set dif-
ferent coefficients as fixed values to explore changes in 
FDC, as depicted in Fig.  7. Although the effect of the 
model parameters in various climate conditions has 
already been discussed by Botter et  al. [18], here, we 
primarily focused on baseflow coefficients to determine 

Fig. 5 Observed and simulated FDCs in dry season. (a) CCB, (b) CYB, (c) YFB, (d) BSB, (e) LMB, (f) YPB, (g) NMP, and (h) SLB catchment
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how storage–discharge relationship characterizes the 
simulated FDC. Higher b or lower a value leads to lower 
probability at a low streamflow and higher probability at 
a high streamflow, indicating that there are more high-
flow events in the catchment. Conversely, a lower b or 
higher a value indicates that the catchment is dominated 
by a low flow. These descriptions of nonlinearity of stor-
age–discharge relationship and streamflow magnitude 
are consistent with the assumptions about the short- and 
long-term states.

To comprehend MLE and REC model perfor-
mance, we used cKS, to evaluate similarity between the 
observed and simulated FDCs, as depicted in Table  4. 
MLE results showed that cKS range in the dry season 
was 0.05–0.09 and that in the wet season was 0.04–
0.07. These cKS values at the seasonal scale were expect-
edly higher than those reported by Santos et al. [19] at 
the one-year scale (cKS ≈ 0.02). This was also close to 
the results of Santos et al. [22] for the summer stream-
flow (cKS ≈ 0.04); therefore, the performance of MLE 
in our study was still acceptable. Except for YFB and 

NMP, cKS values were larger in the dry season than in 
the wet season, indicating that the model with MLE 
simulated FDC superiorly in the wet season. Addition-
ally, SLB results showed the worst performance in the 
dry season. This may be affected by reservoir drainage, 
which causes abnormally high streamflow in the dry 
season, and can be considered as a storage–discharge 
characteristic with artificial impacts. In REC, cKS val-
ues ranges in the dry and wet seasons were 0.12–0.57 
and 0.22–0.49, respectively. Except for LMB and SLB, 
cKS values were lower in the dry season than in the wet 
season, indicating that individual recessions performed 
better in simulating FDC in the dry season. This is also 
consistent with the criterion that REC can be used 
only under low-flow conditions [33]. However, overall 
results demonstrated that cKS values were an order of 
magnitude higher in REC than in MLE. Therefore, MLE 
results were more suitable for describing the slow and 
natural discharge behavior of aquifers. Nevertheless, 
since the model determines the probability distribution 
pattern, most of the higher cKS values may have been 

Fig. 6 Observed and simulated FDCs in the wet season. (a) CCB, (b) CYB, (c) YFB, (d) BSB, (e) LMB, (f) YPB, (g) NMP, and (h) SLB catchment
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affected by the number of data points at the seasonal 
scale that can be augmented to confirm whether there 
is a more obvious difference in the model performance 
between the two seasons.

3.3  Dynamic storage components
After using the storage–discharge sensitivity function 
to estimate the Sd, we then separated Si from ST, which 
was computed using the water balance method. The 
dynamic storage components during dry and wet sea-
sons are depicted in Fig. 8. The ranges of average Sd and 

Si were − 11.61–7.69 mm and 0–63.89 mm in dry seasons, 
respectively. In wet seasons, the range of average Sd and Si 
were − 16.32–24.89 mm and 0–222.83 mm, respectively. 
Higher Si during the wet season indicates that more 
rainfall infiltration may increase aquifer storage. Most of 
the Sd values were negative in the dry season, represent-
ing a continuous decline in groundwater discharge. Both 
dynamic storage components were generally higher dur-
ing the wet season, and it indicates that dynamic storage 
may be predominantly controlled by rainfall during the 
different seasons. Previous studies on groundwater level 
variation mechanisms have suggested that accumulated 
rainfall has a significant impact on groundwater level 
changes, and their correlation can be enhanced by set-
ting a lower rainfall threshold [46, 47]. Chen et  al. [48] 
also found the groundwater level fluctuation potential in 
the wet season was higher than that in the dry season in 
the Choushui River Basin through exploring the influ-
ence of dominant factors on groundwater. However, the 
changes in groundwater level are somewhat inconsistent 
with our results, and this may be caused by their estima-
tion based on the relationship between groundwater and 
influencing factors rather than hydrological variables we 
used. It shows limitation of general water balances and 
importance of linking the potential influencing factors to 
groundwater.

Fig. 7 Schematic diagram of influence of baseflow coefficients (a) a and (b) b on simulated FDCs

Table 4 Kolmogorov–Smirnov distance (cKS) with MLE and REC 
in dry and wet seasons

Catchment Dry season Wet season

MLE REC MLE REC

CCB 0.08 0.24 0.05 0.25

CYB 0.04 0.12 0.04 0.22

YFB 0.07 0.28 0.07 0.34

BSB 0.07 0.16 0.05 0.49

LMB 0.07 0.57 0.06 0.33

YPB 0.07 0.16 0.06 0.26

NMP 0.05 0.36 0.05 0.41

SLB 0.09 0.36 0.04 0.26
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Interestingly, catchments BSB, YFB, LMB, and NMP, 
which had higher elevations, had the highest total 
dynamic storage ranges among the eight catchments. 
This may be related to the storage capacity of moun-
tain aquifers. In a comparison between inclined and 
horizontal aquifers, Sayama et  al. [2] have suggested 
that inclined aquifers have a larger storage capacity and 
smaller groundwater discharge area. Therefore, aquifer 
can store additional water after runoff occurs. Within 
the total dynamic storage, the average Si accounted for 21 
and 75% in the dry and wet seasons, respectively. These 
results depict that dynamic storage mostly contributes to 
streamflow in the dry season, and Si accounts for more 
than half of the total dynamic storage in the wet season. 
Dralle et al. [25] found that the total amount of dynamic 
storage continued to reduce during the no-streamflow 
period in summer, which represents Si loss due to evapo-
transpiration. This indicates that Si changes are also con-
trolled by other hydrological variables. However, whether 
groundwater that stores during the wet season provides 
baseflow for dry season is still questionable and essen-
tial for catchment ecosystem maintenance. The physical 
mechanism of Si requires a more specific explanation, 
and there is also a high degree of uncertainty regarding 
water balance methods at short time scales. Hydrological 

models or downscale satellite gravity measurements [49, 
50] can be considered to improve dynamic storage esti-
mation in the future.

4  Conclusions
This study applied the analytical FDC model with MLE 
for simulating FDCs to estimate baseflow coefficients in 
the dry and wet seasons. Using the Kolmogorov–Smirnov 
distance, similarity between the simulated and observed 
FDCs was also determined as the model performance for 
exploring the difference in catchments and the two sea-
sons and comparing them with REC. Combined with the 
water balance approach, the two dynamic storage compo-
nents were estimated to analyze the changes and regional 
differences at the catchment scale. The model with MLE 
performed well in both dry and wet seasons and also had 
an order of magnitude higher performance than that 
with REC. Differences in the baseflow coefficients from 
downstream to upstream catchments in the wet seasons 
were consistent with the relationship between the coeffi-
cients and catchment characteristics. Seasonal difference 
in baseflow coefficients indicated that seasonal rainfall 
affected the extent of the aquifers through which ground-
water flows. Additionally, a comparison with REC dem-
onstrates that REC coefficients were mostly attributed to 

Fig. 8 Average direct (Sd) and indirect storage (Si) in (a) dry and (b) wet seasons. Dry seasons (November–April) from 2013 to 2017 and wet seasons 
(May–October) from 2013 to 2017 are shown from left to right
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the short-term discharge state with faster drainage and 
high streamflow. Therefore, MLE results tended to char-
acterize the storage–discharge relationship and avoid fast 
recession with a high-flow event. Although there was 
no specific trend in the dynamic storage components, 
catchments at higher altitudes had larger dynamic stor-
age amounts owing to their higher storage capacity. The 
proportion of total dynamic storage also demonstrated 
an obvious seasonal difference with additional ground-
water storage. Applying the analytical FDC model to esti-
mate dynamic storage components will help improve our 
understanding of catchment dynamic storage response 
mechanisms and may offer a reference for hydrological 
prediction or water resource management.
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