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Abstract 

Chlorophyll‑a concentration for quantifying phytoplankton biomass is commonly used as an indicator for evaluating 
the trophic level of lakes and water quality. This research aimed to develop a high spatiotemporal‑resolution model 
for the retrieval of chlorophyll‑a in inland water. Firstly, the machine learning based models considering Sentinel‑2 
Multispectral Instrument and Sentinel‑3 Ocean and Land Color Instrument (OLCI) images were applied to estimate 
chlorophyll‑a concentrations (R2 = 0.873 and 0.822, respectively). The spatiotemporal fusion was performed to fuse 
the OLCI and MSI chlorophyll‑a images with low temporal resolution but fine spatial‑resolution, and with high tempo‑
ral resolution but coarse spatial‑resolution. The random forest was applied to fuse images from two distinct sensors, 
and to refine the spatial resolution of OLCI estimations to be the same as those of Sentinel‑2 MSI. Results showed that 
the spatiotemporal fusion can estimate dense‑temporal 10 m spatial resolution chlorophyll‑a concentration in the 
Tsengwen Reservoir (Root‑Mean‑Square Error, RMSE = 1.25–1.47 μg  L−1). The spatiotemporal fusion model was effec‑
tively applied to determine high spatiotemporal‑resolution chlorophyll‑a measurements in the aquatic system.
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1 Introduction
An inland water system is a significant water source, 
particularly for human necessities. Global inland fresh-
water ecosystems undergo extensive changes due to the 
increase in human demand for fresh water in the last 
century. Agricultural runoff, industrial waste, excrement, 
and other wastes generated by human activities across 
water bodies have increased the anthropogenic input of 
nitrogen and phosphorus, resulting in extensive eutroph-
ication [1]. An evident indication of eutrophication is the 
fast growth and increased amount of suspended algae or 

phytoplankton. Harmful algal bloom is an environmental 
problem because it causes the discoloration of affected 
waters and imbalance among organisms in aquatic eco-
systems [2, 3]. Phytoplankton biomass is one of the 
critical biologically sensitive elements for assessing the 
ecological status of water and health risks of aquatic eco-
systems [2]. Sufficient data are necessary to be acquired 
for a lake monitoring system in terms of bloom informa-
tion because such information is spatially and tempo-
rally heterogeneous [3]. Chlorophyll-a concentration for 
quantifying phytoplankton biomass is commonly used as 
an indicator for assessing the trophic level of lakes [4, 5] 
and representing the state of water quality [6].

Remote sensing and satellite imaging have been applied 
to estimate chlorophyll-a in inland water in recent 
years for sustainable water resources management [7]. 
Numerous researches were reported the use of a band 
ratio algorithm for estimating coastal and inland water 
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characteristics [8, 9]. The algorithms have been devel-
oped for chlorophyll-a estimation in inland waters; 
however, the capability to decrease interference on 
reflectance from a spectral band ratio algorithm is prefer-
able [7]. The chlorophyll-a estimation models in waters 
were developed such as three-band, red–near infrared 
(NIR), blue–green, green–blue, and red–green mod-
els [10–15]. The blue–green band ratio was frequently 
used for estimating chlorophyll-a concentration in clear 
waters (Case 1 water) [15] because optical properties of 
clear waters are controlled by phytoplankton. In Case 2 
water, turbidity is high and the algorithm experiences dif-
ficulty in estimating chlorophyll-a in this spectral region 
due to low correlation of the presence of chromophoric 
dissolved organic matter and phytoplankton. The red to 
NIR ratio is used for measuring in turbid waters to avoid 
non-algal particleabsorption[10]. Moreover, employing 
machine learning approaches is feasible and effective for 
modeling water quality parameters in aqueous environ-
ments [6, 16]. The application of machine learning algo-
rithms to global ocean and inland water quality retrievals 
is particularly suited for improving the accuracy of chlo-
rophyll-a estimation [16, 17]. Many studies considered 
machine learning approaches for estimating water qual-
ity parameters using satellite imagery [18, 19]. Machine 
learning provides a promising way for operational use 
of regional water quality monitoring [18]. Compared 
to physical  models,  machine learning  algorithms are an 
approach for handling inversion problems without theo-
retical analyses of spectral information. Machine learning 
is the most highly efficient and effective approach to eval-
uate relations between the water quality parameters and 
corresponding remote-sensing reflectance [18]. In the 
current research, machine learning was used to imple-
ment the band ratio algorithm and estimate chlorophyll-
a maps.

The Sentinel-2 and Sentinel-3 are equipped with sen-
sors for measuring and estimating regional chlorophyll-
a concentrations [20–22]. Sentinel-2 and Sentinel-3 
satellite instruments provide a good prospect for chlo-
rophyll-a retrieval in complex waters wherein a good 
spatiotemporal resolution is required [20–22]. Sentinel-2, 
carries onboard the Multispectral Instrument (MSI), 
which is a high-resolution satellite instrument that pro-
vides orthoimage bottom-of-atmosphere (BoA) cor-
rected reflectance products. Sentinel-2 MSI, which has 
been on board since June 2015, provides open-access 
satellite products with the spatial resolution, offering 
10, 20, and 60  m through 13 spectral bandwidths. MSI 
is favorable for advanced chlorophyll-a monitoring in 
inland water because this instrument is qualified for the 
red-edge and the red bands, which are close to the phyto-
plankton peak spectral reflectance of 700 nm wavelength. 

The ability of the MSI band ratio algorithm for chloro-
phyll-a retrieval has been evaluated [7, 20, 23]. Sentinel-3 
carries onboard the Ocean and Land Color Instrument 
(OLCI) sensor, providing broad-coverage images with 
a spatial resolution of 300 m and rapid revisit time that 
supports marine applications. The Sentinel-3 OLCI is a 
sensor for the rapid chlorophyll-a retrieval because it has 
a shorter revisit time than the MSI. The rapid revisiting 
time of OLCI provided the chances to produce an estima-
tion of chlorophyll-a in high temporal resolution. How-
ever, the spatial resolution of Sentinel-3 OLCI images is 
too coarse for small inland reservoirs. In this study, spa-
tiotemporal fusion was applied to refine the spatial reso-
lution of Sentinel-3 OLCI estimations to be the same as 
those of Sentinel-2 MSI. The data fusion is performed to 
fuse two satellite image data with high spatial-resolution 
but low temporal-resolution, and with high temporal-
resolution but coarse spatial-resolution [24]. Spatiotem-
poral fusion aims at fusing sparse fine-resolution images 
with frequent coarse-resolution images i.e. fusing dense-
temporal coarse-spatial-resolution, and sparse-temporal 
fine-spatial resolution images to create fine spatiotempo-
ral resolution images [24]. The primary categories of spa-
tiotemporal fusion from processing level includes  data 
level, information level, and decision level. Previous stud-
ies incorporated fusion at the data level between images 
that are spatially and spectrally correlated for water qual-
ity monitoring [25, 26]. In the current study, machine 
learning-based spatiotemporal fusion was applied with 
information level to generate high-spatiotemporal-res-
olution results by combining chlorophyll-a maps from 
MSI and OLCI data.

High-spatiotemporal-resolution chlorophyll-a images 
in inland waters were estimated by machine learn-
ing. Firstly, the various spatiotemporal resolution chlo-
rophyll-a maps from MSI and OLCI were estimated 
mainly using random forest (model A and B). These 
chlorophyll-a estimations were then fused into the high-
spatiotemporal-resolution chlorophyll-a maps. Random 
forest identified the relation between MSI and OLCI 
chlorophyll-a (model C). After training, the fusion model 
simulated high-spatial-resolution chlorophyll-a based on 
OLCI (high-temporal-resolution) chlorophyll-a.

2  Materials and study area
2.1  Study sites
The reservoirs exhibit various physical and biogeo-
chemical characteristics, and they are spread in Taiwan 
(Fig.  1): Northern Taiwan (Shimen and Baoshan Res-
ervoirs), North-west Taiwan (Yongheshan, Mingde, 
and Liyutan Reservoirs), and Southern Taiwan (Tseng-
wen, Wushantou, Chingmien, Chengcing, Agongdian, 
and Fengshan Reservoirs). The water area and depth of 
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reservoirs are provided in Supplementary materials, 
Table S1. Residential and industrial areas near reser-
voirs also influence anthropogenic pollution in Taiwan’s 
major reservoirs [27]. Approximately 80% of the study 
sites (9 of 11 reservoirs) are categorized under meso-
trophic lake condition, while 20% of the study sites are 
categorized under eutrophic lake level. With regard to 
the turbidity data from Taiwan’s Environmental Protec-
tion Administration (EPA), most of the study sites are 

categorized as fresh water, with a turbidity level of < 10 
nephelometric turbidity units.

2.2  Chlorophyll‑a Observation
EPA in Taiwan provides environmental information 
through an open data platform (https:// data. epa. gov. 
tw/ en/) that includes spatially and temporally resolved 
chlorophyll-a observation. Figure  1 shows the locations 
of monitoring stations (sampling sites) across reservoirs. 

Fig. 1 Spatial locations of Taiwan’s reservoirs as study sites. Distribution of monitoring stations: a Shimen Reservoir, b Baoshan Reservoir, 
c Yongheshan Reservoir, d Mingde Reservoir, e Liyutan Reservoir, f Tsengwen Reservoir, g Chingmien Reservoir, h Agongdian Reservoir, i Chengcing 
Reservoir, j Fengshan Reservoir, and k Wushantou Reservoir

https://data.epa.gov.tw/en/
https://data.epa.gov.tw/en/
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The data collected from 11 reservoirs are used to expand 
the observation data to obtain a wide range of chlo-
rophyll-a concentrations for model development. The 
observation data of chlorophyll-a were collected from 
2019 to 2021 at a sample depth of 0.5 m. The dataset is 
divided into two categories: Datasets A and B. Dataset 
A comprises chlorophyll-a observation data that cor-
respond to Sentinel-2 satellite images, and is used to 
develop a chlorophyll-a estimation (Chla_S2) model 
for MSI (Model A). Dataset B consists of chlorophyll-a 
observation data that correspond to Sentinel-3 satel-
lite images, and is used to develop an estimation model 
under OLCI environment (Model B) because the spa-
tial resolution of OLCI (300  m) limits the utilization of 
small reservoirs. A single pixel in OLCI that is covered 
with more than one chlorophyll-a monitoring station is 
excluded for training. Consequently, 433 and 218 chloro-
phyll-a observation data from study sites were collected 
for Dataset A and B, respectively. Descriptive statistic of 
dataset A and B are shown in Tables S2 and S3.

2.3  Remote sensing images
Sentinel-2 Level-2A satellite imagery is retrieved as 
orthoimage BoA reflectance (atmospheric corrections 
included). Sentinel-2 Level-2A imagery is available under 
open access in the Google Earth Engine (GEE) catalog 
[28]. GEE consists of a multi-petabyte analysis of large 
geospatial remotely sensed data, and it is considered a 
high-performance cloud computing platform. The qual-
ity of the Sentinel-3A OLCI dataset in GEE is not prefer-
able for scientific applications. The Sentinel-3 dataset in 
the GEE repository lacks atmospheric data and observa-
tion geometry, which are requirements for atmospheric 
correction and further image processing. However, GEE 
transforms the original data, resulting in the deviation 
of pixel values from the original data. Sentinel-3A OLCI 
Level-1 data are derived from an open-source platform 
provided by NASA (https:// ladsw eb. modaps. eosdis. nasa. 
gov/). OLCI has an atmospheric issue; hence, radiometric 
correction is necessary before it can be used [29]. Image 
correction for atmospheric effects (iCOR) is a method 
for the atmospheric correction instrument of satellite 
data over land and coastal and inland waters [30, 31]. 
The iCOR atmosphere correction module involves Sen-
tinel 3A-OLCI top-of-atmosphere radiance to obtain 
atmospheric-corrected data. iCOR’s functional applica-
tions, continuous development, and dexterity to different 
processing infrastructure provide a stable, efficient, and 
high-quality processing performance, making iCOR qual-
ified for various further implementations.

Cloud-free days should be preferably designated for 
the observation sampling of chlorophyll-a and satel-
lite overpass. However, many conditions and limitations 

cause the observation sampling data to not precisely 
correspond with cloud-free days. Temporal matching is 
allowed to acquire sufficient data when no matchup point 
exists between observation and satellite overpass [32]. If 
no corresponding image is available during the sampling 
date of water quality observation, then the closest tem-
poral image within a time window of observation data 
is obtained, i.e., 3  days. Ensuring an adequate number 
of matchup points is a strategy for developing a model. 
The low synchronization of the matchup between chlo-
rophyll-a observation and satellite images significantly 
affects the degree of correlation [33]. The number of 
observations within the time window is shown in Tables 
S4 and S5. In addition, the rapid change in water qual-
ity may be unsuitable for supporting model construction 
[32]. Satellite image acquisition and observation date are 
determined under a 3-d time window. A total of 119 MSI 
images and 55 OLCI images were used for generating 
Model A and B.

3  Methods
This research is conducted using machine learning 
models: (A) chlorophyll-a estimation model for MSI, 
(B) chlorophyll-a estimation model for OLCI, and 
data fusion used for high spatiotemporal chlorophyll-
a mapping (Fig. 2). Under Sentinel-2 MSI imagery and 
chlorophyll-a field data, Model A transfers from the 
Sentinel-2 band ratio (BR_S2) to the concentration of 
chlorophyll-a. The proposed technique is also per-
formed under Sentinel-3 OLCI environment and con-
sidering chlorophyll-a observation for control points 
(estimation model B). Under the specified band ratios, 
the model B uses the Sentinel-3 band ratio to estimate 
chlorophyll-a. The current research focuses on using 
band combinations that are critical to chlorophyll-
a estimation in water. Six developed and frequently 
used band ratios, including green–blue and red–NIR 
in terms of two- and three-band ratios (Table  1), are 
selected for evaluating the performance and degree of 
correlation toward chlorophyll-a estimation. Eventu-
ally, the high spatial resolution of MSI and high tempo-
ral resolution of OLCI are integrated to obtain a higher 
spatiotemporal resolution estimation.  In data fusion, 
the random forest model identifies the relation between 
Sentinel-3 and Sentinel-2-based chlorophyll-a. The 
data fusion can estimate chlorophyll-a of high-spati-
otemporal resolution with Sentinel-2 spatial resolu-
tion and Sentinel-3 temporal resolution (Fig. 2). Before 
training the model, the outlier detection strategies are 
performed. Consequently, a significant error exerts 
a relatively greater effect on total square error. Root-
mean-square error (RMSE) or standard error residual, 
coefficient of determination (R2), and mean absolute 

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
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error (MAE) are used to identify the performance of 
the generated model. The dataset is divided into 80 and 
20% for training and testing in model A and B, respec-
tively. At least one representative location is picked as 
testing data in most lakes. In addition, the waterbody 
is detected by utilizing the normalized difference water 
index using green and NIR wavelengths.

3.1  Estimation model A development for MSI
The model transfers from BR_S2 to the concentration of 
chlorophyll-a. The model input is used by BR_S2 from 
each observation. After the selection of band ratios, the 
red–NIR and green–blue band ratios are used. The model 
output represents the Chla_S2. The function f from BR_
S2 to Chla_S2 in Model A is expressed as follows.

Fig. 2 Research workflow (Estimation model A: chlorophyll‑a estimated from MSI; Estimation model B: chlorophyll‑a estimated from OLCI; Data 
fusion: high‑spatiotemporal‑resolution chlorophyll‑a estimated from the fusion of chlorophyll‑a Models A and B)
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Model A, f : BR_S2 ∈ R
2 → Chla_S2 ∈ R

1   (1)
where R

n : n-dimensional vector. The developed 
machine learning approach, including random forest or 
decision tree, is an established model for identifying the 
function  from BR_S2 to Chla_S2. Two band ratios are 
used as the inputs in a linear regression with the inter-
cept. Random forest and decision tree are nonpara-
metric supervised learning methods with moderately 
convenient algorithms that are capable of handling large 
datasets [34]. The chlorophyll-a estimation model is gen-
erated under scikit-learn machine learning in Python. 
Three models i.e. decision tree, random forest, and linear 
regression are used for test and comparison. In terms of 
generating a machine learning model for estimating chlo-
rophyll-a, the observation dataset is randomly divided 
into training (80%,  N = 327) and testing (20%,  N = 82) 
data, employing the same input for all the models. The 
estimation model uses a regression technique that is pro-
cessed under scikit-learn 0.21 supported Python 3.7. To 
obtain the best hyperparameter scheme, iterative tuning 
is utilized to determine the optimal value for Model A. 
The model minimizes the L2 loss using the mean of each 
terminal. To obtain the best hyperparameters scheme, 
iterative tuning is utilized to determine the optimal 
parameters for random forest and decision trees (param-
eters in Table S6).

3.2  Estimation model B development for OLCI
The model transfers from Sentinel-3 band ratios (BR_
S3) to chlorophyll-a concentration. The band ratios are 
selected, i.e. red–NIR and green–blue band ratios are 
used here. The model inputs are BR_S3 from each obser-
vation, and the output is the chlorophyll-a concentration 
vector (Chla_S3).

Model B, f : BR_S3 ∈ R
2 → Chla_S3 ∈ R

1   (2)
Here, random forest is applied as the model (param-

eters in Table S6). With regard to generating a random 
forest model for estimating chlorophyll-a under OLCI 
environment, the observation dataset B is divided into 

training (80%,  N = 175) and testing (20%,  N = 43) data. 
The data used in the further development of Model B are 
Sentinel-3A OLCI satellite images and the corresponding 
chlorophyll-a observation data (Dataset B). The utiliza-
tion of OLCI is due to the short revisit time to improve 
the low temporal resolution in MSI.

3.3  Data fusion
Spatiotemporal fusion is developed to obtain an estima-
tion model for evaluating variability of rapid changes in 
a small reservoir. Sentinel-3 OLCI exhibits a limitation 
in result interpretation because of its lower spatial reso-
lution. In data fusion, OLCI is combined with MSI and 
complies with the information under MSI environment. 
The concept is related to the major technique of data 
fusion that injects the detailed information selected from 
low-resolution images with high spatial resolution [35]. 
The fusion transfers from resampled Sentinel-3 chloro-
phyll-a ( Chla_S3′ as input) to Chla_S2 as output for data 
fusion.

Data fusion, f : Chla_S3′ ∈ R
1 → Chla_S2 ∈ R

1    (3)
First, Sentinel-3-based chlorophyll-a is resampled to 

the same resolution as Sentinel-2 MSI by using bicubic 
interpolation (Chla_S3’). For data integration of OLCI 
and MSI, the random forest model identifies the relation 
between Sentinel-3 and Sentinel-2-based chlorophyll-
a. After training, the fusion model can simulate high-
spatial-resolution chlorophyll-a based on Sentinel-3 
chlorophyll-a. The best model is obtained from 10 tree 
estimators, and the model parameters are shown in the 
Fig. 6.

4  Results
4.1  Chlorophyll‑a estimation from MSI
Figure  3 presents the chlorophyll-a estimation per-
formance of multiple combinations of band ratios 
by using the three approaches. The model with 
[R(665)−1 − R(708)−1] × R(753), (BR 5) and R(560)/R(492) 
(BR 2) produces an excellent result by using the random 
forest method. The model achieves an RMSE of 6.99 µg 
 L−1 and a high correlation of R2 = 0.873 (Fig. 4, Table 2), 
outperforming decision tree (R2 = 0.807) and multi-
ple linear regression (R2 = 0.343). This proposed model 
consists of the BR 2 and 5 combination of chlorophyll-
a retrieval algorithms (Fig.  3). A combination of band 
ratios will produce a reliable result due to the sensitiv-
ity levels and complexity of each band. Using multiple-
band ratio can boost the performance metric (R2) and 
produce a robust model; the greatest contribution to 
model improvement is the combination of red–NIR and 
green–blue band ratios [36]. As a red–NIR three-band 
model, BR 5 has been proven to be effective in improving 

Table 1 Developed band ratios of chlorophyll‑a estimation in 
inland water

R: surface reflectance

Index Band Ratio (BR) Reference

BR 1 R(560)/R(443) [7, 32]

BR 2 R(560)/R(492) [7]

BR 3 R(708)/R(665) [11]

BR 4 R(753)/R(665) [11]

BR 5 [R(665)−1 − R(708)−1] × R(753) [11]

BR 6 [R(708) + R(753)] × R (665)−1 [7, 33]
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Fig. 3 Performance of model A from linear regression, decision tree, and random forest in chlorophyll‑a retrieval by using multiple band ratios 
assessed by a R2, b RMSE, and c MAE

Fig. 4 Validation of the best model (random forest) by using 20% of the dataset of the observed and estimated chlorophyll‑a produced by the [BR 
5, BR 2] algorithm
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model accuracy. The most important factor is described 
by[R−1

665 − R
−1
708 ] for BR 5 because the fittest estimation 

model is obtained from the combination that consists of 
BR 5 (RMSE) = 6.99–7.82 µg  L−1) input variable through 
the random forest method. The existence of reflectance 
at 753 nm combined with BR 5 is highly correlated with 
chlorophyll-a because of its ability to decrease the scat-
tering effect of inorganic particles [37].

The multiple-band ratio random forest model is 
adopted to process Sentinel-2 MSI data and map inland 
water. As the largest reservoir in Taiwan, the Tseng-
wen Reservoir is selected for demo purposes. Figure 5 
illustrates the capability of random forest to map and 
present chlorophyll-a distribution on February 2019, 
April 2019, February 2020, and May 2020 with RMSEs 
of 1.21, 1.49, 1.10 and 1.23  µg  L−1, respectively. The 
Tsengwen Reservoir reached the maximum capacity 
during the wet season (April–July), while sedimenta-
tion or other self-sinking mechanisms dominate the 
spatial distribution pattern during the dry season 
(November to February). The concentration of chloro-
phyll-a is high in the upstream area, but it decreases 
downstream; this condition is related to the occurrence 
of dilution.

Table 2 RF model performance for training and testing in model 
A and B

Model R2 RMSE ( µgL−1)

Training Testing Training Testing

A 0.882 0.873 5.670 6.994

B 0.801 0.822 1.385 1.185

Fig. 5 Spatial map of estimated chlorophyll‑a applied to Sentinel‑2 Level‑2A in the Tsengwen Reservoir generated by Model A, during the wet 
season (a,c) and dry season (b,d)
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4.2  Chlorophyll‑a estimation from OLCI
Considering the rapid revisit time and multiple match-
ups of Sentinel-3 OLCI with MSI, it is considered an MSI 
surrogate for rapid chlorophyll-a retrieval assessment. 
The [BR5, BR2] random forest exhibits robust perfor-
mance on Sentinel-3 OLCI, wherein the model performs 
satisfactorily in chlorophyll-a retrieval. Random forest 
presents the best fit in machine learning and quantified 
on the basis of the mean square phase. Figure 6 depicts 
the further validation of the estimated chlorophyll-a with 
20% observed chlorophyll-a data. The model acquires 
RMSE = 1.19  µg  L−1 and R2 = 0.822 (Table  2). In terms 
of mapping purpose, the poor spatial resolution of OLCI 
has limited its application to smaller water bodies and 
estuaries.

Figure  7 presents the estimation map of the Tsengwen 
Reservoir generated using Model B OLCI at February 2019 
(RMSE = 1.32  µg  L−1), December 2019 (RMSE = 1.53  µg 

 L−1), and February 2020 (RMSE = 1.37 µg  L−1). Sentinel-3 
OLCI has been a practical instrument for estimating chlo-
rophyll-a and indicating and monitoring the spatiotemporal 
dynamic process of water quality. However, the spatial reso-
lution of OLCI is insufficient for inland water quality usage, 
especially regional reservoirs. The 300 m spatial resolution 
of Sentinel-3 OLCI is slightly coarse. Thus, describing the 
details of the spatial distribution pattern is difficult in the 
Tsengwen Reservoir.

4.3  Data fusion from chlorophyll‑a estimations
Random forest in the fusion model produces a fused map 
since OLCI and the nearly synchronous MSI images are 
selected. Figure  8 presents the estimations through the 
closest time of the satellite constellation MSI (February 
16, 2019), OLCI (February 15, 2019), and fine-resolution 
fusion map on February 18, 2019, obtaining an estimated 
RMSE of 1.21, 1.32, and 1.35 µg  L−1, respectively. Result 

Fig. 6 Validation of Model B by using the observed and estimated chlorophyll‑a by using 20% of the dataset

Fig. 7 Estimation maps of the Tsengwen Reservoir by using Model B from Sentinel‑3 OLCI



Page 10 of 14Chusnah et al. Sustainable Environment Research           (2023) 33:11 

implies that the fusion model can refine the low-reso-
lution concentration from OCLI to the fine-resolution 
estimated one. These maps consistently show high chlo-
rophyll-a concentration in the upstream and midstream 
(Fig. 8).

Figure  9 presents the data-fusion estimated maps dur-
ing two months. The estimation RMSE of 1.37, 1.47, and 
1.25 µg  L−1 are obtained using the integrated estimation of 
the control points on December 5, 2019, January 7, 2020, 
and February 4, 2020, respectively. Spatial maps exhibit 

Fig. 8 Estimated chlorophyll‑a by using Sentinel‑3 OLCI, Sentinel‑2 MSI, and fine‑resolution estimation map from data fusion in Tsengwen Reservoir 
on February 2019

Fig. 9 Fine spatiotemporal resolution chlorophyll‑a concentration in the Tsengwen Reservoir from December 2019 to February 2020 (field 
observation dates: December 5, 2019, January 7, 2020, and February 4, 2020)
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similar continuous concentration patterns in the mid-
stream area from December 5, 2019 to January 4, 2020. The 
higher concentration in the upstream occurred from Janu-
ary 16 to 31, 2020. The patterns show that the chlorophyll-a 
hotspot varies with time. The high spatiotemporal resolu-
tion of chlorophyll-a is estimated within the reservoir when 
considering spatiotemporal fusion. Figure  10 presents 
the temporal variability of the predicted chlorophyll-a in 
six monitoring stations of the Tsengwen Reservoir within 
two months. The field monitoring is insufficient because 
monthly chlorophyll-a observation data from EPA’s moni-
toring station are available on December 5, 2019, January 7, 
2020, and February 4, 2020. The concentration of predicted 
chlorophyll-a decreased from December 5, 2019 to Febru-
ary 4, 2020, and aligned with the observed chlorophyll-a. 
The utilization of our model proves to be a good option 
for producing spatiotemporal variation of chlorophyll-
a from data fusion. The model is applied to time-series 
OLCI images for estimating dense-temporal chlorophyll-a 
concentration and analyzing the varied pattern. The spati-
otemporal estimated chlorophyll-a between the observa-
tion dates can be derived from Sentinel-3 OLCI through 
the fusion model. The spatial distribution of fused chloro-
phyll-a varies with time. From the data fusion with few field 
observations, we can clearly understand the changes of the 
chlorophyll-a in time and space.

5  Discussion
5.1  Machine learning for water quality monitoring
Although the complexity and nonlinearity of the rela-
tionship between water properties and factor parameters 

require an advanced analysis [19, 38, 39], the machine-
learning based models are implemented well [6, 18], 
especially image-based estimation [36] However, few 
studies considered multiple satellite image datasets to 
provide high spatio-temporal resolution water qual-
ity mapping products. Based on the machine learn-
ing approaches, this study contains great potentials for 
timely environmental monitoring and assessment using 
water quality inversion and fusion. Chlorophyll-a estima-
tion with two spatiotemporal resolutions (model A and 
B), and spatiotemporal fusion of chlorophyll-a (model C) 
are developed.

Clear water usually adopts the blue and green spectral 
regions, while turbid water adopts the red–NIR spectral 
bands [12, 34]. In Taiwan, the states of water quality in 
reservoirs are heterogenous. Considering the multiple 
band ratios e.g. blue–green and red-NIR band ratios are 
the best selections for chlorophyll-a estimation in this 
study. Consequently, blue reflectance is not a reliable 
predictor because of the overlapping absorption across 
its spectral region [37]. In turbid inland waters, NIR and 
red-edge ratio can evaluate chlorophyll-a concentra-
tion with significant accuracy. The wavelength peak of 
chlorophyll-a typically depends on two factors: chloro-
phyll fluorescence and minimum absorption coefficient. 
Significant chlorophyll-a absorption in low reflectance 
between 400 and 500  nm results in a broad reflectance 
while a low absorption of algae is produced at approxi-
mately 560  nm. Furthermore, the combination of NIR 
and red bands while considering critical reflectance 
around 675 nm is proposed [11].

Fig. 10 Chlorophyll‑a estimated concentration in six monitoring stations of the Tsengwen Reservoir from December 2019 to February 2020 
(squared: monthly field observation)
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Basing on the range of chlorophyll-a in the study lakes, 
most reservoirs in Taiwan are marked as mesotrophic 
waters such as Tsengwen Reservoir. In addition, not all 
algae are rich in chlorophyll-a, such as diatoms, brown 
algae, etc. The machine learning model will be feasible for 
other water quality parameters since in-situ water qual-
ity monitoring can be considered more parameters. The 
model with the effective band ratios can provide an accu-
rate and appropriate water quality estimation. Machine 
learning models can estimate chlorophyll-a concentra-
tions well within the range of the training data [18]. In 
this demo case, chlorophyll-a concentrations were stable 
in the field monitoring periods, but were varied between 
the monitoring periods (< 6  µg  L−1 at most time). The 
model is still available because its variations within the 
range of the training data. Moreover, some extreme 
points are not performed well because the only one 
global estimation model is trained. In the future, multiple 
local models will be developed after datasets are applied 
firstly in cluster analysis due to lake-specific. Further-
more, few observations cannot allow us to examine the 
structure of estimation discrepancy with respect to space 
and time for detailed validation. The UAV will be applied 
to collect actual chlorophyll-a concentration data in the 
future.

5.2  Spatiotemporal fusion
Spatiotemporal fusion is originally developed for blend-
ing reflectance from Landsat and MODIS data, and is 
potential for interdisciplinary applications such as land 
surface temperature [40], air quality mapping [41] and 
etc. In this study, spatiotemporal fusion is applied to fuse 
Sentinel-2 with Sentinel-3 images to estimate dense-tem-
poral 10  m spatial resolution water quality parameters. 
Chlorophyll-a estimation from Sentinel-3 OLCI is refined 
into fine resolution as Sentinel-2 MSI. The fusion model 
is estimated from images alone without using any meas-
urements at all. The difficulty of OLCI in capturing fine 
spatial-resolution variations of chlorophyll-a at a small 
reservoir is presented as a result of its sensor technical 
limitation. In accordance with temporal resolution, Sen-
tinel-2 MSI cannot achieve high-frequency chlorophyll-a 
monitoring. Therefore, combining with Sentinel-3 OLCI 
(rapid revisiting time: 2  days) can significantly improve 
the frequency of water quality monitoring [22].

Here, we consider the fusion of multisource satellite 
data to obtain water quality information. Chlorophyll-
a concentration and characteristics, instead of raw sen-
sor data fusion, are used in the fusion process. The data 
fusion at chlorophyll-a information from MSI and OLCI 
rather than sensor data level can provide enhancement 
to the chlorophyll-a estimation processes and patterns 
for solving practical problems. Amplifying this approach 

through utilizing multiple spatiotemporal resolutions of 
images in data fusion can greatly expand the high spati-
otemporal resolutions of chlorophyll-a concentration in 
monitoring and assessment.  Moreover, the spatiotem-
poral fusion can be extended for mapping other water 
quality parameters if the training dataset is prepared. The 
fusion model can automatically and accurately identify 
the temporal variation and spatial distribution of chloro-
phyll-a concentration in near real-time mapping. Satel-
lite imagery is used to determine regional water quality 
parameters in the aquatic system and plays an immense 
role in sustainable water resources management. Not 
only Sentinel images, long-sequence Landsat images 
are suitable to use for monitoring inland water quality 
dynamics including inter-annual, seasonal, and abrupt 
changes. Furthermore, the fusion model depends on 
spectral consistency of spectral to chlorophyll-a transfor-
mation. The fusion model may have some limitations if 
the water components seriously change due to nature or 
human interference.

6  Conclusions
This study aims to generate a rapid machine learning 
approach of chlorophyll-a estimation in inland water 
by using band ratio algorithms based on Sentinel-2A 
MSI and Sentinel-3 OLCI images. The spatiotempo-
ral fusion technique is effective methods to integrate 
multiple chlorophyll-a concentration images for water 
quality monitoring. Result shows that the most robust 
model is multiple-band ratio random forest (R2 = 0.873), 
i.e., the combination of green–blue (BR 2) and red–
NIR (BR 5) ratios from Sentinel-2A MSI. Moreover, the 
developed model also robustly performs for chloro-
phyll-a retrieval under a Sentinel-3 OLCI environment 
(R2 = 0.822). In accordance with the estimation of Tseng-
wen Reservoir, the model performs well using the MSI 
model (RMSE = 1.1–1.61  µg  L−1), and the OLCI model 
(RMSE = 1.32–1.53 µg  L−1).

The spatiotemporal fusion can estimate dense-tempo-
ral 10 m spatial resolution chlorophyll-a by utilizing only 
the time-varying Sentinel-3 OLCI after training under 
MSI and OLCI environments. The random forest model 
fused the sparse fine-resolution chlorophyll-a images 
with frequent coarse-resolution chlorophyll-a images 
to create the high spatiotemporal resolution ones. This 
study validates the potential of high-spatiotemporal-res-
olution chlorophyll-a estimation from the spatiotemporal 
fusion of the MSI and OLCI (RMSE = 1.25–1.47 µg  L−1) 
in Tsengwen Reservoir. The high spatiotemporal resolu-
tion concentration of chlorophyll-a will be used as an 
indicator for quantifying phytoplankton, which contrib-
ute to the primary productivity of inland waters. In the 
future, Carlson trophic state index values for the trophic 
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state of the reservoir will be considered, and correlations 
or models among chlorophyll-a, total phosphorus con-
centration, and Secchi depth will be identified firstly. This 
approach will be applied to estimate other water quality 
parameters such as Secchi depth.
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