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Abstract 

The volatilization of volatile organic compounds following a leakage event is a crucial mechanism that influences 
their migration and transformation in the soil. It is noteworthy that this process is intricately shaped by soil properties 
and environmental factors, exhibiting highly complex nonlinear relationships. However, there is currently no reliable 
mathematical model to predict the nonlinear relationship. To address this gap, the study conducted dynamic experi-
ments considering various factors, including particle size, organic matter content, temperature, wind speed and mois-
ture content. The volatilization rate ( k ), an important parameter in volatilization kinetics reflecting the speed of vola-
tilization, was calculated by first-order kinetic principle. Finally, an innovative approach was introduced using a Back 
Propagation Neural Network (BPNN) model for prediction. The findings indicate that wind speed exerts the most 
significant impact on the volatilization rate of benzene among the examined factors. The application of BPNN demon-
strates the model’s accuracy in simulating benzene volatilization rates under diverse conditions. The results of K-fold 
cross-validation alleviate concerns of potential over-prediction, affirming the reliability of the constructed model. This 
research introduces a novel methodology for predicting volatilization parameters in real-world scenarios.

Highlights 

: Five factors including particle size, organic matter content, temperature, wind speed and moisture content were 
considered.

: Wind speed has the most significant impact on the volatilization of benzene among five factors.

: A Back Propagation Neural Network model was successfully implemented to predict the volatilization rates 
of benzene.

Keywords  Volatilization of benzene, Soil properties, Environmental influential factors, Back Propagation, K-fold cross-
validation

1  Introduction
In various industries, such as chemical manufacturing, 
metal smelting, and petroleum processing, the inad-
vertent release of volatile organic compounds (VOCs) 
poses significant threats to air, soil, and groundwater 
[1–3]. Due to their high vapor pressure, low dissolu-
tion, and high coefficient of diffusion, the volatilization 
process emerges as a crucial mechanism determining 
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the fate of VOCs [4, 5]. Vapor retardation through 
volatilization can decelerate migration and reduce 
the total contaminant mass in soils, thereby influenc-
ing the distribution characteristics of contaminants in 
the unsaturated zone and groundwater. Consequently, 
understanding the volatilization process of VOCs on 
the soil surface holds significant scientific importance 
in elucidating environmental pollution mechanisms 
and aiding in the remediation of petrochemical-con-
taminated fields.

Previous research has demonstrated that the volatiliza-
tion is influenced by the type of VOCs [6]. Specifically, 
for different BTEX compounds, the volatilization rate 
increases with the saturation vapor pressure (10, 3.8, 
1.26 and 0.43 kPa for benzene, toluene, xylene, and eth-
ylbenzene, respectively) [7]. Additionally, soil proper-
ties and environmental conditions [4, 8–10] are crucial 
factors influencing the volatilization. For example, Lu 
et al. [4] investigated the volatilization of toluene in soil 
through batch experiments under varying moisture con-
tent conditions. The results indicated that an increase in 
moisture content promoted the volatilization of toluene 
under low moisture conditions, while under high mois-
ture conditions, an increase in moisture content reduced 
the volatilization of toluene. Indoor simulation experi-
ments conducted by [10] indicated that the increasing 
wind speed accelerated the volatilization speed of diesel 
oil. The study of Zhang et al. [9] showed the three most 
important factors influencing the soil vapor extraction 
remediation efficiency were the length of time, pollutant 
type, and temperature.

From above researches, it has been found that there is a 
non-linear relationship between volatilization and influ-
encing factors, introducing challenges in predicting the 
volatilization parameters under varying conditions. From 
1980s, the artificial neural network (ANN) has garnered 
widespread attention for its exceptional capabilities in 
addressing complex nonlinear problems across various 
engineering disciplines [9, 11–16]. For instance, Qiao 
et al. [15] demonstrated the effectiveness of the general-
ized regression neural network with K-folder cross vali-
dation (K-CV) in accurately predicting the mechanical 
properties of hypereutectoid steels; Ding et al. [16] opti-
mized the water quality index assessment model using 
the combined weights based on machine learning and 
game theory; Wang et al. [14] successfully employed the 
back propagation neural network (BPNN) to estimate the 
benzene adsorption mass on three soils considering five 
factors. While ANN has been proven to perform well in 
simulating the nonlinear problem associated with differ-
ent factors, within our search scope, no relevant research 
has explored the application of ANN on the volatilization 
of VOCs.

This study focused on volatilization characteristics 
of benzene on three types of soils: silt loam, loam, and 
sandy loam. Comparative experiments were conducted 
to analyze the volatilization characteristics of benzene 
under varying conditions involving temperature, wind 
speed, and media moisture content in three soils. Sub-
sequently, the volatilization models were employed to 
fit experimental data, determining benzene volatiliza-
tion rates. Then the impact of different factors on the 
volatilization process was analyzed, identifying the pri-
mary controlling factor in the volatilization process. 
Furthermore, the BPNN model was applied to predict 
the volatilization rates on different factors. Also the 
K-CV was applied to validate the BPNN model reliabil-
ity. These findings contribute to a deeper understanding 
of the migration behavior of VOCs on soils. Moreo-
ver, the enhanced prediction accuracy of volatilization 
parameters provides valuable insights for the develop-
ment of actual multiphase and multiscale models.

2 � Materials and methods
2.1 � Study area
The study area is situated in a chemical industrial park 
in northeast China, as shown in Fig. S1. This region 
is a significant industrial base with over 240 chemi-
cal enterprises specializing in new chemical materi-
als, petrochemicals, and fine chemicals. The climate in 
the study area is classified as the continental monsoon 
climate of the northern temperate zone. The average 
annual precipitation is 882 mm, the average annual 
evaporation is 871 m, the daily average temperature 
is 5.8 °C, and the average annual wind speed is 2.7 m 
s−1. During the preliminary investigation, a significant 
explosion accident was identified within the chemi-
cal park, resulting in a severe exceedance of benzene 
homologues’ concentrations in groundwater. Notably, 
benzene, with a concentration surpassing the III stand-
ard limit of Chinese Standards for groundwater quality 
(10 µg L−1) by 7368 times, emerged as a major con-
cern. Due to its small molecular weight, considerable 
water solubility, and high vapor density, benzene was 
chosen as the representative in this study. Unpolluted 
soil samples were collected from three distinct types 
of soils in the study area, as detailed in Table  S1. The 
testing methodologies were in accordance with those 
outlined in articles authored by the researcher [14]. The 
organic matter content (OMC) was determined using 
potassium dichromate oxidation with external heat-
ing. Particle size was measured with a laser particle size 
analyzer (Bettersize 2000, Dandong Baite Instrument 
Co., China).



Page 3 of 10Wang et al. Sustainable Environment Research           (2024) 34:18 	

2.2 � Experimental apparatus and procedures
The volatilization of organic pollutants can be inves-
tigated by the concentration measurement method, 
which monitors concentration changes of VOCs in soil 
columns or air by chromatography [17, 18] or port-
able volatile gas detectors [4]. Another method, weight 
measurement method [10], is considered a simple and 
effective experimental technique, involves using vari-
ous containers such as glass dishes, aluminum boxes, 
iron cans, and soil columns filled with distilled water 
and media to simulate water and soil surfaces, respec-
tively. Subsequently, VOCs are introduced into the con-
tainers, and the weight of the pollutants is recorded at 
different time intervals to calculate the losses due to 
volatilization.

(1)	Experimental apparatus

The static volatilization experimental apparatus, as 
depicted in Fig.  1, comprises three main components. 
The first component, serving as the core of the experi-
mental setup, includes a portable refrigerator, a ther-
mometer, and an ion fan. The refrigerator regulates 
the temperature, monitored by the embedded ther-
mometer, while the ion fan controls wind speed. The 
ion fan is chosen for its small volume, light weight, and 
easy of placement. The ion fan is placed on a grid sup-
port above the soil, allowing the wind to blow directly 
onto the soil surface. The second component features a 
weight monitoring device utilizing a precision analyti-
cal balance with an accuracy of 0.0001 g. This device is 
employed to measure losses due to volatilization. The 
third component is a ventilation chamber that extracts 
the air inside the cabinet, treats it appropriately, and 
then disperses it into the atmosphere outside. All the 

experiments were conducted in the ventilation cham-
ber to prevent benzene polluting the surrounding air.

(2)	Experimental apparatus and procedures

Twenty g sterilized soil were carefully placed into an 
aluminum box with a height of 3 cm with a diameter of 
5 cm. According to the dry density of the soils, the height 
of silty loam, loam and sandy loam in aluminum box were 
0.91, 0.79 and 0.88 cm, respectively. Also, 2 mL benzene 
was injected into top of 20 g soil, with a parallel sample 
without the addition of benzene to avoid the potential 
confounding factors. The initial mass of the apparatus 
was measured, and subsequent mass measurements were 
conducted at regular intervals (5, 10, 20, 30, 40, 60, 80, 
100, and 120 min). The experiment continued until the 
mass difference between consecutive measurements fell 
within a range of 0.05 g. The volatilization quantity of 
organic compounds at different time intervals was calcu-
lated. Then various volatilization models were applied to 
fit the experimental data and the volatilization rates were 
determined.

Three primary influencing factors of temperature, 
wind speed, and moisture content were selected to 
explore the dynamic characteristics of volatilization 
under different conditions. Controlled temperatures of 
10, 15, 20, 25, and 30 °C were achieved using a refriger-
ator for precise temperature regulation. An ion fan was 
utilized to adjust wind speed, with airflow rates at 2.6, 
3.1, and 3.6 m3 min−1. For moisture content, 20 g steri-
lized soil, initially dried, were spread evenly on a plastic 
wrap. Moisture levels of 10, 20, and 30% were achieved 
by uniformly adding 2, 4, and 6 mL of ultra-pure water, 
respectively. The soil samples were enclosed in plastic 
wrap and allowed to stand for 12 h to ensure uniform 

Fig. 1  Experimental apparatus for volatilization
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water distribution. All experiments were repeated three 
times, with the average value being recorded.

2.3 � Prediction of volatilization rates under different 
influential factors

The BPNN algorithm, serving as one typical ANN 
method, possesses the excellent mechanism of error 
feedback optimization, thus exhibits outstanding capa-
bilities in mapping multidimensional functions and 
adeptly handles complex regression problems [19, 20]. 
The BPNN network structure comprises three layers: 
input, hidden, and output [21]. Notably, the hidden 
layer is particularly effective in addressing nonlinear 
problems. Feature data from the dataset enters the 
network through the input layer and propagates to the 
hidden layer. The hidden layer, functioning as a neu-
ral network’s black box, consolidates various function 
capabilities for handling complex problems. The output 
layer receives the processed data from the hidden layer 
and adjusts its internal parameters (weights and biases) 
to minimize the difference between the predicted and 
actual output.

A three-layer BPNN model was developed using 
Python. The input layer includes temperature, wind 
speed, moisture content, median particle size (D50), 
and organic matter content. Notably, the study empha-
sizes the influence of media on volatility by considering 
median particle size (D50) and OMC as key descriptors. 
The volatilization rates were served as the output. The 
dataset of 33 samples were randomly divided into three 
parts: 70% allocated for training, 15% for validation sam-
ples, and 15% for testing purposes.

Given the limited dataset size in the volatilization 
experiment, the potential risk of overfitting on training 
data exists when employing the BPNN model [22]. Over-
fitting occurs when the model fits the training data well 
but encounters challenges in generalizing to data outside 
the training set. To address this concern, cross-validation 
is employed as a strategy to assess and validate the per-
formance of the constructed BPNN model, thereby miti-
gating the risk of overfitting [23].

K-CV is a popular resampling method in cross-val-
idation [24]. The process involves three steps. Firstly, 
the dataset D is randomly partitioned into m folds of 
approximately equal size. Then, one fold is designated 
for testing, while the remaining m-1 folds are donated for 
training. This process is repeated m times in total. Finally, 
the cross-validation error is calculated as the average of 
the mean squared error (MSE) across all iterations. In the 
context of this study, the value of m is set to 4, taking into 
account the dimensions of the dataset and the availability 
of computational resources.

To evaluate the performance of the machine learning 
models, the correlation coefficient (R) and MSE were 
employed as assessment metrics for the BPNN model.

where n is the total number of samples; Oi denotes the ith 
experimental value of the volatilization rate; Pi represent 
the ith modeling value of the volatilization rate by BPNN; 
O and P represent the average values of the experimental 
and simulated volatilization rates for the total samples, 
respectively.

3 � Results and discussion
3.1 � Effects of soil properties on volatilization
The volatilization kinetics results for benzene on silty 
loam, loam and sandy loam are presented in Fig.  2. As 
depicted in the curves, the residual mass of benzene on 
the three soils decreases over time, and the declining rate 
decreases with time until reaching a stable state. Under 
static water conditions, the volatilization loss of benzene 
is directly proportional to time [7]. In porous media, 
during the initial stages of volatilization, the volatiliza-
tion loss was approximately proportional to time, similar 
to the trend in static water condition. However, as time 
progressed, benzene infiltrated into the soil, and the vola-
tilization process was influenced by media factors such 
as dispersion, surface adsorption, and gas diffusion chan-
nels. Therefore, the examination of volatilization loss in 
relation to time reveals a non-linear correlation.

Various equations have been employed in previous 
research to express this non-linear correlation, includ-
ing first-order kinetic principle [7], logarithmic principle 
[6], and parabolic equation [10]. These equations were 
employed to fit the volatilization data. Among these 
models, the first-order kinetic model (Eq.  (3)) provided 
the best fit to the data, as illustrated in Fig. 2. The fitting 
parameters are detailed in Table 1.

where mo is the initial mass of pollutant; mt is the resid-
ual mass at t time; and k is the rate constant for benzene 
volatilization.

Among the three soils, the stable times of silty loam, 
loam and sandy loam are 200, 160 and 100 min, respec-
tively. The volatilization rate of silty loam, loam, and 
sandy loam are 0.21, 0.22 and 0.26 min−1. It is found that 
the volatilization rate decreases with a decrease in the 

(1)R =

n

i=1
Oi −O Pi − P

n

i=1
Oi − O

2 n

i=1
Pi − P

2

(2)MSE =

∑

n

i=1
(Pi − Oi)

2

n− 1

(3)mt = m0e
−kt
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particle size. The conclusion is consistent with the result 
reported by Tong et al. [7]. As the particle size decreases, 
the soil tends to have larger specific surface areas, smaller 
porosity, and higher clay content. The results in increased 
benzene entrapment and a reduction in effective diffu-
sion channels for gas, thus hindering volatilization.

3.2 � Effects of temperature on volatilization
The curves depicting the residual mass of benzene in 
three soils over time under varying temperature condi-
tions are shown in Fig.  3. Meanwhile, the fitting results 
of the corresponding kinetic models are presented in 
Table S2. Analysis of Fig. 3 reveals that the volatilization 
rate of benzene in soil increases with the rising tempera-
tures. This phenomenon can be explained by two rea-
sons. Firstly, the saturation vapor pressure of benzene 
is increased with the rise in temperature [25], making 
it easier for benzene to volatilize into the air. Secondly, 
elevated temperature reduces the viscosity of the non-
aqueous phase [26], thereby enhancing the mobility of 
benzene in the soil.

As the temperature escalated from 10 to 30 °C, the 
volatilization equilibrium time of silty loam, loam and 
sandy loam decreased from 240 to 80 min, 200 to 80 min 
and 140 to 60 min, respectively. The volatilization rate of 
silty loam, loam, and sandy loam increased from 0.015 
to 0.037 min−1, 0.015 to 0.037 min−1, and 0.017 to 0.049 
min−1, respectively. The variations in volatilization equi-
librium time for silty loam, loam, and sandy loam are 160, 
120, and 80 min, respectively. Silty loam has a greater 
duration than loam and sandy loam. The correspond-
ing increases in volatilization rates are 0.022, 0.022, and 
0.032 min−1, with sandy loam exhibiting a higher incre-
ment than loam and sandy loam. This suggests that tem-
perature exerts a more significant impact on soils with 
larger particle sizes.

3.3 � Effects of wind speed on volatilization
In Fig. 4, a comparison between scenarios with no wind 
and those with wind (at three wind speeds: 2.6, 3.1, and 
3.6 m3 min−1) reveals significant variations in the volatili-
zation loss on soils. Meanwhile, the fitting results of the 
corresponding kinetic models on different wind speeds 
are presented in Table S3. The presence of wind signifi-
cantly increases the volatilization rate of benzene com-
pared to the scenario without wind, as depicted in Fig. 4. 
According to boundary-layer theory, volatile organic 
compounds traverse the air boundary layer from soil sur-
face to the turbulent edge, then rapidly leave the soil sur-
face with the turbulent flow. The increase in wind speed 
enhances the volatile of pollutant molecules from the 

Fig. 2  The volatilization kinetics results for benzene on silty loam, loam and sandy loam incorporating experimental data points 
and the corresponding model-fitted curve

Table 1  The parameters of the kinetic models to fit the 
volatilization data

Soils k (min−1) R2

Silty loam 0.021 0.982

Loam 0.022 0.986

Sandy loam 0.026 0.980
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boundary layer to the air, while not significantly affect-
ing the kinetic energy of organic molecules on the solid 
surface [10]. The volatilization at the solid surface quickly 

reaches equilibrium in wind speed of 2.6 m3 min−1. Con-
sequently, further increases in wind speed result in mini-
mal changes in the volatilization rate of pollutants.

Fig. 3  The curves of the residual mass of benzene with time on different temperatures in three soils of (a) silty loam, (b) loam and (c) sandy loam

Fig. 4  The curves of the residual mass of benzene with time on different wind speeds in three soils of (a) silty loam, (b) loam and (c) sandy loam
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Moreover, under the two scenarios for three soils, 
there is a substantial difference in pollutant loss in 
the early-stage, while the trends converge in the later 
stage. In the early stages of volatilization, benzene have 
not yet infiltrated into soil, the rate of air flow deter-
mines the thickness of the boundary layer. With higher 
wind speeds, there is a thinner boundary layer and an 
increased concentration gradient within the boundary 
layer, enhancing diffusion capacity and consequently 
increasing the volatilization rate.

In the later stages of volatilization, benzene infil-
trates into the soil, and the volatilization above the soil 
surface is weakened, and thus the volatilization rate is 
minimally controlled by wind speed.

For silty loam, loam, and sandy loam, the volatiliza-
tion equilibrium time decreases from 200 to 30 min, 
160 to 30 min, and 100 to 20 min, respectively. The 
volatilization rate increases from 0.019 to 0.11 min−1, 
0.022 to 0.21 min−1, and 0.026 to 0.22 min−1. The vari-
ations in volatilization equilibrium time for silty loam, 
loam, and sandy loam are 170, 130, and 80 min, respec-
tively, and the corresponding increases in volatilization 
rates are 0.09, 0.19, and 0.19 min−1. It is indicated that 
wind speed exerts a more significant impact on soils 
with larger particle sizes.

3.4 � Effects of moisture content on volatilization
In experiments under varying moisture conditions for 
benzene volatilization, a blank control group was estab-
lished to calculate the potential mass losses due to water 
evaporation. The equation for calculating the mass loss 
of benzene is as follows:where mt is the residual mass of 
pollutant at t time; mtk is the loss caused by water evapo-
ration; mt1 is the measured mass of pollutant at t time.

Calculating the actual volatilization of benzene under 
different moisture conditions, the curves depicting the 
variation of volatilization with moisture content are 
shown in Fig.  5. The corresponding kinetics fitting out-
comes are presented in Table  S4. The comparison in 
Fig. 5 on different moisture content reveals that the vola-
tilization rate of benzene in all soils exhibits an increas-
ing trend with the increase of moisture content. The 
volatilization process of benzene in the subsurface layer 
of soil can be categorized into pre-infiltration diffusion 
and post-infiltration diffusion. The greater the benzene 
retained on the soils, the slower its volatilization. On 
one hand, the increase in soil moisture content result in 
a reduction of effective porosity in the soil, impeding the 
infiltration of benzene into the soil interstices, promoting 
pre-infiltration diffusion. On the other hand, an increase 

(4)mt = mt1 +mtk

Fig. 5  The curves of the residual mass of benzene with time on different moisture contents in three soils of (a) silty loam, (b) loam and (c) sandy 
loam
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in moisture content reduces the soil’s adsorption capacity 
[4], facilitating the volatilization of benzene into the air.

Under the moisture content of 30%, for silty loam, 
loam and sandy loam, the volatilization equilibrium time 
decreases from 200 to 80 min, 160 to 80 min, and 100 
to 60 min, respectively. The volatilization rate increases 
from 0.021 to 0.033 min−1, 0.022 to 0.040 min−1, and 
0.026 to 0.050 min−1. The variations in volatilization 
equilibrium time for silty loam, loam, and sandy loam 
are 120, 80, and 40 min, respectively. The corresponding 
increases in volatilization rates for silty loam, loam, and 
sandy loam are 0.012, 0.018, and 0.024 min−1, respec-
tively. It is indicated that moisture content exerts a more 
significant impact on soils with larger particle sizes.

3.5 � Correlation analysis and prediction of the volatilization 
rate under different key factors

The experimental results regarding the factors influenc-
ing the volatilization of benzene include temperature, 
wind speed, moisture content and soil properties. To 
characterize how variations in these parameters con-
tribute to the overall volatilization, correlations between 
various influencing factors and the volatilization rate of 
benzene were computed. Zero-order correlation coef-
ficients and partial correlation coefficients [27]  were 

obtained by Pearson Correlation Analysis as shown 
in Table  S5. Observably, across the five factors, the 
volatilization rate is strongly related with wind speed 
( r > 0.9 ), while other factors and the volatilization rate is 
non-correlated.

According to the prediction result by BPNN shown 
in Fig. 6 and the evaluation result shown in Table 2, the 
BPNN model demonstrates excellent capability in simu-
lating the volatilization rate of benzene in soil. The cor-
relation coefficient of testing is reported as 0.981, and its 
RMSE is calculated at 0.011.

The results of K-CV by BPNN are shown in Fig. S2 and 
Table  2. As can be seen, the predictive result of testing 
with the average R of 0.963 and MSE of 4.054e-4 indi-
cates that there is a good possibility to estimate the vola-
tilization rate of benzene in different influential factors by 
BPNN. K-CV was used in this study to provide a robust 
assessment of the BPNN model’s performance by consid-
ering multiple training and testing sets, thus enhancing 
its ability to generalize beyond the original dataset.

The application of BPNN in this paper has shown 
promise in predicting volatility rates. However, some 
limitations persist with the BPNN model. Overfitting 
remains a potential concern despite the application of 
K-CV to mitigate its risk. Additionally, the interactive 

Fig. 6  The prediction result of the volatilization rates of benzene (a) under different influencing parameters by BPNN and the stacked bar chart 
of the proportion of influencing factors (b), this proportion were obtained by normalizing the values of each influencing factor between 0 and 1
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effects among the various influential factors affect the 
accuracy of predictions of volatility rates, highlighting 
the need for consideration in future studies.

4 � Conclusions
Comparative volatilization experiments were con-
ducted under different influential factors of soil prop-
erties, temperature, wind speed, and moisture content. 
Our systematic analysis revealed the impact of these 
factors on the volatilization and provided insights into 
the associated mechanisms. The results indicated that 
an increase in particle size, temperature, and moisture 
content corresponds to an elevated volatilization rate of 
benzene. The presence of wind significantly enhances 
the volatilization rate, with higher wind speeds having a 
relatively minor impact.

To delve into the complex non-linear relationships 
between influencing factors and the volatilization coef-
ficients, Pearson correlation analysis was employed. 
Among all the factors, wind speed emerged as the 
most influential on the volatilization. Furthermore, we 
utilized the BPNN as a powerful tool to simulate the 
volatilization rates on different influential factors, and 
the fitting results demonstrated a good performance. 
Finally, to address potential overfitting concerns due 
to the limited dataset, K-fold cross-validation was con-
ducted, affirming the reliability of the BPNN model.

In conclusion, this study provides a comprehensive 
understanding of the factors influencing the volatiliza-
tion of benzene, and the application of advanced mod-
eling techniques of BPNN enhances the accuracy and 
reliability of predictions in scenarios with limited data.
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