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Abstract

Monitoring water bodies by extraction using water indexes from remotely sensed images has proven to be effective in
delineating surface water against its surrounding. This study tested and assessed the Normalized Difference Water Index,
Modified Normalized Difference Water Index, Automated Water Extraction Index, and near infrared (NIR) band using
Landsat 8 imagery acquired on September 3, 2016. The threshold method was adapted for surface water extraction. To
avoid over and under-estimation of threshold values, the optimum threshold value of each of the water indexes was
obtained by implementing a geoprocessing model. Examining images of Landsat 8, NIR band has the largest difference
in reflectance values between water and non-water bodies. Thus, NIR band exhibits the highest contrast between water
and non-water bodies. An optimum threshold value of 0.128 for NIR band achieved an overall accuracy (OA) and kappa
hat (K coefficient of 99.3% and 0.986, respectively. NIR band of Landsat 8 as water index was found more satisfactory
in extracting water bodies compared to the multi-band water indexes. This study shows that the optimum threshold
values of each of the water indexes considered in this study were determined conveniently, where highest value of OA
and Ky, coefficient were obtained by creating and implementing a graphical modeler in Quantum Geographic
Information System that automates from setting threshold value to accuracy assessment. This study confirms that
remote sensing can extract or delineate water bodies rapidly, repeatedly and accurately.
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Introduction

Remote sensing is an observation method in obtaining
information about several objects on Earth’s surface (that
generally includes water, vegetation, built-up, and bare
soil), without having contact with the use of sensors [1].
Optical remote sensing sensors are the vital devices that
measure distinct spectral signatures, concerning wave-
lengths, that each sensor measures reflected or emitted
energy [2—4]. However, clouds or haze and cloud
shadows affect optical remote sensing images [5-8]
which makes it challenging to discriminate them from
dark objects like water and shadows [5, 7, 8]. Thus,
cloud and haze-free images were used for this study.
Recent surface water mapping methods using optical
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imagery are generally categorized as supervised classifi-
cation [9-11], unsupervised classification [11, 12], and
water spectral indexes [13-17].

Remote sensing is essential in several studies on surface
water mapping including but not limited to water bodies
extraction [13-16, 18], flood management [19, 20], and
water quality [21-23]. Delineation of water bodies from
remotely sensed imagery by extraction techniques has
long been applied [13-16, 18]. The methods involved
comfort with the number of bands used mainly single-
band and multi-band [18, 24]. Water body extraction by
multi-band water index threshold methods was intro-
duced by McFeeters [13] from Landsat 4 Multispectral
Scanner using green and near-infrared (NIR) bands, by
Rogers and Kearney [14] from Landsat Thematic Mapper
(TM) using red and green and shortwave infrared (SWIR)
bands, by Xu [15] from Landsat 5 TM and Landsat 7
Enhanced TM using SWIR bands, and by Feyisa et al. [16]
from Landsat 5 TM using green, blue, NIR, and SWIR
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bands. Such methods examine comprehensively the bands
considered [24] in order to determine the threshold that
categorizes water from non-water bodies [15]. Threshold
values both in single-band and multi-band water indexes
are determined based on surface reflectance between
water and non-water bodies [11]. However, Xu [15]
emphasized that the subjective threshold value determi-
nation could lead to under- or over-estimation of open
water areas. Additionally, determination of threshold value
that is producing optimum accuracy is perplexing,
time-consuming, and image dependent [16, 25]. Further-
more, Feyisa et al. [16] made a comparison of optimum
thresholds and found variations at different test sites.

Knowing that Landsat missions have been implemented
for the past four decades, Landsat satellites performances
improve a great deal. In fact, Landsat 8 is considered “ro-
bust, high performing, and of extremely high data quality”
[26]. Similarly, Landsat 8 has a different position of central
wavelength with narrower bandwidth particularly bands 5
and 7 [25, 27].

Water absorbs more energy (low reflectance) in NIR
and SWIR wavelengths, while non-water reflects more en-
ergy (high reflectance) [11, 16, 25, 28]. Considering that
the narrower bandwidth has the advantage of effectively
discriminating specific objects [29], NIR as single-band
water index and multi-band water indexes of McFeeters
[13], Rogers and Kearney [14], Xu [15], Feyisa et al. [16]
using Landsat 8 was investigated in the present study. It is
worth noting that single-band water index using NIR band
was probably last investigated by Work and Gilmer [28] in
1976. Hence, this study focuses on extracting water bodies
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applying both the single-band and multi-band water
indexes by threshold method using Landsat 8 operational
land imager (OLI). The study also aims at avoiding under-
or over-estimation of extracted water bodies by obtaining
an optimum threshold value where the highest values for
overall accuracy (OA) and Kappa hat (K, coefficient
were reached by creating and implementing a graphical
modeler in Quantum Geographic Information System
(QGIS) that automates the workflow from setting thresh-
old value to accuracy assessment.

Materials and methods

Study area and data description

Located southeast of Cebu City and southwest of Lapu--
Lapu City, Philippines, the study area encompasses the
Municipality of Cordova and some part of Lapu-Lapu
City. The study area extends between 601,605-606,555
Easting (123°55'39.864"-123°58'23.052" Longitude) and
1,132,215-1,137,015  Northing  (10°14'27.924"-10°17"
3.732" Latitude) with a total area of 23.76 km? as shown
in Fig. 1. The study area was selected considering that it is
surrounded with water bodies. The extent of the study
area also covers both shallow water on wetlands and deep
water beyond wetland as revealed on the lower right cor-
ner of the image. It is an important place for urban devel-
opment that will hopefully link Cebu and Bohol Provinces
in the future. It is relatively flat with elevation from sea
level to 7 m. Landsat 8 OLI image acquired on September
3, 2016, with no clouds on the study area, contains the
30-m resolution of band 2 to band 7 and a 15-m
resolution of panchromatic band (Table 1).
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Fig. 1 The extent of the study area
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Table 1 Bands, spectral wavelengths, and resolution of Landsat 8 OLI

Band Wavelength Range (um) Center Wavelength (um) Bandwidth (nm) Spatial Resolution (m)
Band 2 0.450-0.515 (blue) 0482 65 30
Band 3 0.525-0.600 (green) 0.562 75 30
Band 4 0.630-0.680 (red) 0.655 50 30
Band 5 0.845-0.885 (NIR) 0.865 40 30
Band 6 1.560-1.660 (SWIRT) 1610 100 30
Band 7 2.100-2.300 (SWIR2) 2200 200 30
Band 8 0.500-0.680 (Panchromatic) 0.590 180 15

Workflow for water extraction from images without
clouds

Given the availability of data from Landsat 8, Fig. 2 out-
lines the processes employed in water bodies extraction
with the use of an open source QGIS.

Selection of Landsat 8 OLI imagery
Landsat 8 image was selected and downloaded from the
USGS data archive (https://earthexplorer.usgs.gov/). A

cloud free image of September 3, 2016 at the study area
was selected and downloaded.

Clipping of study area

Before implementing pre-processing of the selected
image, clipping bands 2 to 8 to the extent of the study
area was applied. Clipping of band 8 was included for
pan-sharpening purposes. This step was necessary to
reduce memory requirement and speed up further
processes like classification, band calculation, accuracy
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Fig. 2 Workflow of water bodies extraction
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assessment, and building of virtual raster that were im-
plemented in this study.

Image pre-processing

The Semi-Automatic Classification Plugin (SCP) for QGIS
bands 2 to 8 were pre-processed. SCP is an open source
plugin for supervised classification with tools for down-
loading free images, pre-processing, post-processing, and
raster calculation [30]. Multispectral image analysis
requires conversion of its “quantized and calibrated scaled
digital numbers (DNs)” [26] to top of atmosphere (TOA)
reflectance in order to achieve clear Landsat scenes [31]
which is packaged in SCP as shown in Fig. 3. Likewise, the
reflectance at the surface is obtained after atmospheric
correction applying dark object subtraction 1 (DOS1) cor-
rection [32]. Furthermore, to enhance image visualization,
pan-sharpening was adapted transforming 30 m resolution
to 15m.

Spectral radiance at the sensor’s aperture Calculation
of spectral radiance at the sensor’s aperture is a basic
procedure in converting image calibrated DNs into
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meaningful spectral units [30, 33, 34]. Landsat 8 image
data were converted into spectral radiance at the sen-
sor’s aperture using radiance scaling factor [26, 30]:

Ly = MLQcal +AL (1)

where L, is the spectral radiance (W sr™ ' m™> um™); M,
is the radiance multiplicative scaling factor for the band
(Radiance_Multi_Band_n from the metadata, where n is
the band number); A; is the radiance additive scaling fac-
tor for the band (Radiance_Add_Band_n from the meta-
data); and Q. is the quantized and calibrated standard
product pixel value (DN).

TOA reflectance Similarly, DN values in the Level-1
product were also converted to TOA reflectance as the
following equation [30, 34, 35]:

7Td2L,1
Eg, cost

Py = (2)

where d is the Earth-Sun distance in astronomical units
(provided in Landsat 8 metadata file); E;,,,;, is the mean
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Fig. 3 Landsat conversion of DN to TOA reflectance and pan-sharpening with DOS1 atmospheric correction
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solar exo-atmospheric irradiances; 6, is the solar zen-
ith angle in degrees which is expressed as 6;=90°
- 0, where 0, is the Sun elevation angle (provided in
Landsat 8 metadata file); and L, is the spectral radiance at
the sensor’s aperture.

Atmospheric correction using DOS1 method L, does
not consider the effects of the atmosphere; thus, spectral
radiance was translated into surface reflectance where
atmospheric correction method was further applied
[30, 34]. To maximize the use and achieve the full
potential of optical satellite data, an accurate, cost-effect-
ive and easy to apply atmospheric correction method, that
does not require in-situ field measurements particularly of
historical image or image that have been collected before
its examination, is necessary [32, 33, 36]. Thus, an image
based DOS radiometric calibration and correction method
is applicable for historical data. The DOS method was
confirmed effective and accurate where it is successfully
applied among several Landsat studies regardless of loca-
tion in cases when atmospheric measurements are un-
available 33, 35, 37, 39-42].

In this study, a straightforward DOS1 with the assump-
tion that “very few targets on the Earth’s surface are ab-
solute black, so an assumed one-percent minimum
reflectance is better than zero percent” [32] is applied.
The path radiance L, was calculated as [30, 43].

Lp - Lmin - LDOI% (3)

where L, is the “radiance that corresponds to a digital
count value for which the sum of all the pixels with
digital counts lower or equal to this value is equal to the
0.01% of all the pixels from the image considered” [43]
of which the corresponding DN ,,;, was obtained; Lpo;s
is the radiance of dark object.

For Landsat images [30]:

Lyin =M, (DNmin) +AL (4')

For DOS1 technique, the Lpopy was calculated as [30,
32, 39]:

0.01 E,,,) cosb,
nd?

Lpory = (5)
Thus, the Lp was computed as:

Table 2 Multi-band water indexes
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(6)

0.01 E,,, cosb;
L, = M (DNmin) + AL - <—’1)

nd?

Hence, the land surface reflectance p was calculated
as:

_ nd*(Ly - L)
B Esun/l COSQS

P (7)
where E ) = 1d® (Radiance_maxiumu/Relectance_maxi-
mum) [30, 44] and Radiance_maximum and Reflectan-
ce_maximum are provided in Landsat 8 metadata file.

Panchromatic sharpening Panchromatic sharpening or
pan-sharpening is a process of merging or fusing low or
coarser resolution multispectral bands (30 m) with higher
resolution panchromatic band (15m) to generate new
dataset having the spectral properties of the multispectral
bands with a higher resolution of the panchromatic band
[30, 45, 46]. In SCP, Brovey transform algorithm is applied
of which each of the pan-sharpened multispectral bands is
computed as [30, 45]:

MSp = MS G) (8)

where MSp is the pan-sharpened multispectral band; MS
is the multispectral band with lower resolution; P is the
panchromatic band with higher resolution; I is the inten-
sity as a function of the MS bands.

For Landsat 8, using SCP, the intensity is calculated as
[30]:

I 0.42 (Blue) + 0.98 (Green) + 0.6 (Red)
B 2

©)

Water indexes from Landsat images

A number of water indexes have been introduced in the
literature. Five multi-band water indexes were consid-
ered in this study as shown in Table 2. Each of the five
multi-band water indexes differs on the bands being
considered. For normalized difference water index
(NDWT), McFeeters [13] considered green and NIR bands
while Rogers and Kearney [14] considered red and SWIR1
bands. Xu [15] introduced a modified normalized differ-
ence water index (MNDWTI) considering green and

Author Formula Landsat-8 Bands
McFeeters [1] NDWI = (Green — NIR)/(Green + NIR) Band 2: Blue
Rogers and Kearney [2] NDWI = (Red — SWIR1)/(Red + SWIR1) Eg;g if g:;en
Xu [3] MNDWI = (Green — SWIR1)/(Green + SWIRT) Band 5: NIR

) Band 6: SWIRT
Feyisa et al. [4] AWEs, = 4(Green — SWIRT) = (0.25(NIR) + 2.75(SWIR2)) Band 7 SWIR2

AWEIy, = Blue + 2.5(Green) — 1.5(NIR + SWIR1) — 0.25(SWIR2)
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SWIR1 bands. Feyisa et al. [16] introduced two automated
water extraction indexes (AWEI) that considered blue,
green, NIR, SWIR1, and SWIR2 bands. AWEI,, was de-
veloped to efficiently delineate non-water pixels from an
image where shadows are less problematic, while AWEI,
was formulated with improved accuracy that AWEIL,,
might not efficiently discriminate shadow pixels [16].

Analyzing spectral characteristics of water

Landsat 8 has 11 spectral bands that comprise instru-
ments OLI and Thermal Infrared Sensor. However, only
bands 2 to 8 of OLI were considered in this study.
Figure 4 shows the spectral signatures of non-water and
water bodies. Bands 2 to 4 are the visible spectrum of
blue, green and red, respectively, that ranges from 0.45
to 0.68 pum. On the other hand, bands 5 to 7 are invisible
spectrum of NIR, SWIR1 and SWIR2 that ranges from
0.845 to 2.3 um. As shown in Fig. 4, water absorbs
more energy in NIR (band 5) and SWIR (bands 6 &
7) wavelengths, while non-water reflects more energy
[8, 11, 16, 25]. Thus, single-band method chooses between
NIR and mid infrared bands [11]. Examining closely Fig.
4, from left to right, reflectance difference or gap between
water and non-water bodies is increasing from band 2 to
band 5 and decreasing thereafter. In other words, band 5
has the largest difference in reflectance values between
water and non-water bodies. Thus, NIR band was chosen
to be an effective single band water index that can
efficiently delineate water from non-water bodies.

Threshold method of classification

To acquire all pixel values, a layer of points exactly at the cen-
ter of the pixels was created. Generation of this point-layer
was achieved by creating a Microsoft Excel Visual Basic for
Applications (VBA) code that will automate the generation of
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latitude and longitude coordinates. The VBA code only
requires one lower left center of pixel coordinates, intervals
along latitude and longitude, and number of columns and
rows of pixels to be filled. The generated coordinates were
saved as comma separated values (comma delimited) and
imported to QGIS. In this way, a credible number of sample
points can be generated. Consequently, point sampling tool in
QGIS is used to obtain values of pixels for several layers of
water indexes under investigation. As the optimum threshold
value is estimated visually while aided with its histo-
gram [24, 47], the generated layer of sample points made
it more convenient to obtain optimum threshold value.
Furthermore, QGIS has a built-in graphical modeler
that can set up or automate a workflow consisting of
several steps [48], which can combine algorithms com-
ing from several libraries that can enable repetitive exe-
cution of such algorithms with varying parameters [49].
To avoid over- and under-estimation of threshold values
for the different water indexes, a geoprocessing model
was created, as shown in Fig. 5, to achieve an optimum
threshold value for each of the water indexes considered
in this study. Achieving the optimum threshold value of
each of the water indexes involves a considerable re-
petitive process where prior steps generate output that
is utilized by the proceeding step. The considered
optimum threshold value is with the highest OA.

Knowledge based or supervised classification to generate a

reference image

In this study, land covers are simply classified as water
bodies and non-water bodies. With the use of the SCP
ROI (region of interest) pointer using the region growing
algorithm, reference image was created with a consider-
able number of pixels as presented in Fig. 6. The refer-
ence image was adapted for accuracy assessment. In this

Reflectance

Non-Water
—¥— Water

0.865

0.482

1.248
Spectral wavelength, um

Fig. 4 Spectral signature plot of water and non-water bodies. Verticals lines are central values of spectral ranges of bands 2 to 7 from left to right.
Dashed (- — -) and dotted (-) lines represent the 95% confidence intervals of water and non-water bodies, respectively

1.631 2.014
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paper, the same image is used both for classifying image
by threshold method and in generating reference data.
This approach is applicable to the condition that the ob-
tained reference image is more accurate than the classi-
fied image [50]. The generated reference image was
polygonised and saved as shapefile. The polygonised re-
ference image was rasterized with parameters: macro
class ID as attribute field, output resolution in map units
per pixel, 15 m horizontal and 15m vertical resolution.
Eventually, the rasterized image was translated (convert
format) setting “no data” value to zero (Fig. 6).

Since reference image was created conveniently using
SCP ROI pointer, with only two classes (water and
non-water bodies), a large number of samples were con-
sidered with 24,422 and 31,803 pixels for water and
non-water bodies, respectively, or a total of 56,225 pixels
out of 105,600 pixels of the study area. Such number of
samples is large enough compared to the suggestion of
Congalton and Green [51] of 50 samples per class or
100 samples if area exceeds 500 km?. If sample size is
determined by binomial distribution by N = Z*(p)(q)/E*
[37], where Z=2, p is the expected percent accuracy,
q =100 - p and E is the allowable error. Thus, if p = 99%,
E=1%, then N=2%99)(1)/1%>=39% samples only. Like-
wise, considering a sampling ratio of 2% for each land use
class as applied by Heydari and Mountrakis [52], it re-
quires only a total of 21,120 pixels. Hence, the sample size
of 24,422 and 31,803 pixels for water and non-water
bodies, respectively, will most likely achieve a higher prob-
ability of getting correct accuracy estimation.

Accuracy assessment
To quantitatively assess accuracy of classified image,
user’s accuracy (UA), producer’s accuracy (PA), OA, and
Kpae coefficient were adapted for evaluation applying
“r.kappa” algorithm in QGIS [53]. The following widely
adapted equations were used [37, 46, 47, 53, 54]:

UA is the complimentary measure to commission
error that denotes the proportion of a classified spatial
unit in a class represents that class in the reference data.

nij

UA = (10)

it

where 7;; is the total number of correctly classified pixels
in a particular category or class in i-th row and i-th col-
umn, and #;, is the total number of pixels of i-th row i
classified for a particular category.

PA is the complimentary measure to omission error
that indicates the proportion of a classified spatial unit
in a class in the reference data being correctly classified
in the map.
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nj;

PA = (11)

Ny

where n,; is the total number of pixels of i-th column
classified for a particular category of the reference data.

OA is the proportion of the total number of pixels that
are correctly classified against the total number of testing
pixels in the reference data.

04 = 2"
n

(12)
where Yn; is the summation of the correctly classified
pixels and # is the total number of testing pixels in the
error matrix.

Ko is a measure of “agreement based on the diffe-
rence between the actual agreement in the error matrix
and the chance agreement” [54]. Its value lies between 0
and 1, where 0 represents agreement due to chance only
and 1 represents complete agreement between the two
data sets [55].

ny o ni =y (i ny)
n? =3 (i ny)

Kpar = (13)

Results and discussion

Images of colour composites

The surrounding water bodies of the Municipality of
Cordova and southwestern part of Lapu-Lapu City were
selected from Landsat 8 OLI imagery for surface water
extraction. To interpret remotely sensed images, differ-
ent colour composites were explored as presented in
Fig. 7. The natural or true colour composite is a combin-
ation of the visible spectrum of red, green and blue bands
(Fig. 7a). Natural colour composite of bands 4—3-2 resem-
ble closely what the naked eyes can recognize as true
colour or photo-liked image [56] where water in dark blue
to black, white surfaces in white, vegetation in green, bare
soil in brown, and built-up in gray. Natural colour image is
somehow low in contrast (Fig. 7a). The false colour
composite of bands 3-5-7 (Fig. 7b) displays enhanced
vegetation in bright green, underwater vegetation in
red, and built-up in shades of violet. On the other hand,
bands 5-6-7 (Fig. 7c) of false colour composite repre-
sents an elaborated presence of water in black (dark),
vegetation in red, and built-up in shades of cyan. Bands
3-5-7 composite also distinguishes the presence of
shallow water on wetland (red) and deep water (black)
beyond wetland as indicated on the lower right corner of
the study area. Furthermore, bands 5-6-7 of NIR, SWIR1
and SWIR2 composite indicates that water absorbs more
energy in NIR and SWIR wavelengths, while non-water
reflects more energy [11, 16, 25].
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\

Fig. 7 Colour composites: (a) Natural colour composite (bands 4-3-2), (b) Bands 3-5-7 composite, and (c) Bands 5-6-7 composite

Water indexes

Contrasting and delineating different types of land use
can be facilitated by visual inspection based on their
spectral reflectance [18]. The water indexes images of
others [13—-16] and the NIR band derived from Landsat
8 OLI show contrast between water and non-water
features differently as shown in Fig. 8. Water indexes in
Fig. 8 were enhanced by contrast stretching to improve
visual interpretation as well as to minimize effect of
noise [57]. In this case, each of the water index in Fig. 8
was stretched to its corresponding one standard de-
viation both ends (right and left) of its histogram. Generally,
NDWTI of McFeeters [13], NDWI of Rogers and Kearney

[14], and MNDWT of Xu [15] show similarity of contrast
between water and non-water bodies. Visual inspection of
Fig. 8 indicates that NDWT of McFeeters [13] has the least
contrast between water and non-water bodies particularly
on areas where depth of water is shallow on wetlands. As
the study area covers deep water beyond wetland as shown
on the lower right corner, NDWT of McFeeters [13], NDWI
of Rogers and Kearney [14], MNDWI of and Xu [15] reveal
less contrast on this area to non-water bodies such that
deep water appeared gray instead of black as revealed in
AWEIq, and AWEIL, of Feyisa et al. [16] and NIR band
(Fig. 8). However, this has somehow delineates shallow
water bodies on wetlands and deep water beyond wetlands.

than its threshold value are water bodies

Fig. 8 Images produced by different Water Indexes using Landsat 8 OLI. Contrast enhancement was stretched to one standard deviation both
sides. (@) NDWI of McFeeters [13], (b) NDWI of Rogers and Kearney [14], () MNDWI of Xu [15], (d) AWEI,, of Feyisa et al. [16], (e) AWEIy, of Feyisa
et al. [16], (f) NIR band. White to black for all multi-band water indexes (a to e) is low to high index values as pixels with values greater than their
respective threshold values are water bodies. White to black for NIR band (f) is high to low index values as pixels of NIR band with values less
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Water absorbs more energy (less reflective) at visible
red (band 4), NIR (band 5) and short wave infrared
(band 6 & 7) wavelengths [11, 16, 25]. In other words,
water has “strong absorption in the near-infrared and
mid-infrared spectral ranges” [24]. Spectral difference
between water and non-water bodies decreases at short
wave infrared as presented in Fig. 4. Consequently, con-
trast between water and non-water bodies narrows down
at bands SWIR1 and SWIR2. Hence, NIR band is a bet-
ter choice over SWIRI and SWIR2 for water extraction.
NIR band spectral image of Landsat 8 reveals large
contrast between water and non-water bodies.

A noticeable contrast between shallow and deep water
was manifested among NDWI of McFeeters [13], NDWI
of Rogers and Kearney [14], and MNDWI of Xu [15],
indicating that deep and shallow water absorb energy
differently. Furthermore, water index AWEI_, of Feyisa
et al. [16] shows less contrast between water and tidal
wetland vegetation (particularly mangroves). Likewise,
NDWI of McFeeters [13], NDWI of Rogers and Kearney
[14], MNDWTI of Xu [15] and AWEI, of Feyisa et al.
[16] have less contrast between water and built-up white
roof or white surfaces as observed in the natural colour
composite (Fig. 7a). Similarly, AWEI,y, and AWEIL, of
Feyisa et al. [16] and NIR band are having comparable
contrast between water and non-water bodies. However,
NIR band shows better contrast between water and
non-water bodies having no problem with tidal wetland
vegetation (particularly mangroves) and built-up white
roof or white surfaces.

Obtaining an optimum water index threshold values

Optimum threshold values of each of the water indexes
in this study were determined by creating and imple-
menting a graphical modeler in QGIS that automates
the process from setting threshold value to accuracy

(2019) 29:16
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assessment (Fig. 5). Optimum threshold values were de-
termined with the highest value of OA and Ky, coeffi-
cient. Figure 9 reveals interesting characteristics such as:
(a) NIR band having the highest OA and Ky, coefficient
has the narrowest distance between its OA and K, (b)
the lowest OA and K, in McFeeters [13] have the
widest distance between its OA and Kj,; (c) NIR band
has the steepest curve; and (d) all multi-band water
indexes considered in this study have negative optimum
threshold values, while NIR band has a positive
optimum threshold. Furthermore, steepness of curve of
NIR band indicates a high contrast between water and
non-water bodies compared to all multi-band water in-
dexes considered in this study. For all multi-band water
indexes in this study, pixels with values greater than
their respective threshold values are water bodies, while
less than their threshold values are non-water bodies.
On the other hand, pixels of NIR band with values less
than its threshold value are water bodies, while greater
than its threshold value are non-water bodies.

Extracted water bodies based on optimum threshold
value

Figure 10 shows the different results of extracted water
bodies based on optimum threshold value. All six water
indexes applied in this study performed well in delineat-
ing surface water against its surroundings. The NDWI of
McFeeters [13], NDWTI of Rogers and Kearney [14], and
MNDWTI of Xu [15] revealed similar trend of misclas-
sifying white roof or white surfaces as water, while this is
not observed in AWEI, of Feyisa et al. [16] and NIR
band (Fig. 11). The AWEI,y, of Feyisa et al. [16],
MNDWI of Xu [15], NDWI of Rogers and Kearney [14],
and AWEI, of Feyisa et al. [16] misclassified tidal ve-
getation as water in decreasing magnitude, while NDW1I
of McFeeters [13] and NIR band overcome this problem

s 98 - A— 0.98 = NIR band OA, %
RN 96 - ! AN 096 +—— AWEI4OA, %
. : : ) = ——— AWELax OA, %
T T 941 % i V0% B Xonw
. :/\ 924 & . - 0.92 é ——— Rogers-Kearney OA, %
— i o 90 £ L 0.9 B T McFeeters OA, %
T T 2 ’ S = = = NIR band K
R 88 1 g - 0.88 &&= AWEL K
AR 86 | = - 086 & === AWEun K
PN g4 | B 084 £~~~ XuKum
/ :\ g : & — = — Rogers-Kearney Knat
I 82 - o) - 0.82 g — — —  McFeeters Knat
: 80 - - 0.8
o, - - : 78 4 - 0.78
r . T T T T 76 T T T 0.76
-0.35 -0.29 -0.22 -0.16 -0.09 -0.03 0.04 0.11 0.17
Pixel Value
Fig. 9 Optimum Threshold values (the corresponding vertical dotted points) is where the highest values for overall accuracy (OA) and Kappa hat
coefficient (Kna:) were reached
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Fig. 10 Extracted water bodies (black) from the different water indexes based on optimum threshold value: (@) NDWI of McFeeters [13], (b) NDWI
of Rogers and Kearney [14], (c) MNDWI of Xu [15], (d) AWElq, of Feyisa et al. [16], (e) AWEly, of Feyisa et al. [16], and (f) NIR band

Fig. 11 Misclassification as water of white roof or white surfaces (enclosed in red) as observed in (@) natural composite of bands 4-3-2 in the water
indexes of the (b) NDWI of McFeeters [13], () NDWI of Rogers and Kearney [14], and (d) MNDWI of Xu [15] based on optimum threshold value
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(Fig. 12). The large tidal vegetation (mangroves) mis-
classification as water in AWEI g, is an indication that
AWEIL,, of Feyisa et al. [16] has the least contrast be-
tween water and tidal vegetation (mangroves). Although
NDWTI of McFeeters [13] has no problem of misclassi-
fying mangroves as water, it fails to delineate the pres-
ence of shallow water (Fig. 12f). However, AWEIL, has
minor misclassification on white surfaces, as observed
already by Feyisa et al. [16], while NIR band has slight
misclassification on dark non-water surfaces.

Confusion matrix

Large parts of the study area were classified as reference
image for validation (Fig. 6). Such reference image was
used for accuracy assessment. Table 3 shows the confu-
sion matrix of different water indexes that reveals their
performances in classifying water and non-water bodies.
Water index performance is revealed by its water extrac-
tion result where optimum threshold value is considered

(2019) 29:16
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[25]. The NDWI of McFeeters [13] performs the least
accurate with OA and Ky, of 89.3% and 0.779, respect-
ively. This performance of the NDWI of McFeeters [13]
was also observed being the least accurate in the find-
ings of others [58]. McFeeters [13] stressed out that
NDWI values equal to or lesser than zero are non-water
bodies, while NDWTI values greater than zero are water
bodies. However, NDWI of McFeeters [13] was unable
to obtain its highest accuracy, obtaining only 80.3% OA
and 0.576 Ky, applying a threshold value of zero. Thus,
NDWI of McFeeters [13] will be unable to obtain its
highest accuracy by considering theoretical threshold of
zero (Fig. 9) [25].

The NDWI of Rogers and Kearney [14], MNDWI of
Xu [15], and AWEI, of Feyisa et al. [16] indicated a
narrow range of OA and Ky, from 93.0 to 95.1% and
0.857 to 0.900, respectively, indicating that water indexes
of those investigators are comparable. Among the
multi-band water indexes investigated in this study,

Fig. 12 Misclassification as water of tidal vegetation (mangroves, enclosed in green) as observed in a false colour composite of bands 5-6-7 in
the water indexes of the b AWEI,s,of Feyisa et al. [16], ¢ MNDWI of Xu [15], d NDWI of Rogers and Kearney [14], @ AWEl, of Feyisa et al. [16], f
NDWI of McFeeters [13], and g NIR band based on optimum threshold value
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Table 3 Confusion matrix of different water indexes. OT means Optimum Threshold

McFeeters [13] OT=-0.2592

Classification Water Non-Water Total
Water 19,498 1074 20,572
Non-Water 4924 30,729 35,653
Total 24422 31,803 56,225
PA [9%] 798 96.6

UA [%] 94.8 86.2

OA [%] 89.3
Kappa hat 0.779
Rogers and Kearney [14] OT=-0.159

Classification Water Non-Water Total
Water 22,132 1655 23,787
Non-Water 2290 30,148 32438
Total 24422 31,803 56,225
PA [%] 90.6 94.8

UA [%] 93.0 929

OA [%] 930
Kappa hat 0.857
Xu [15] OT=-0.2105

Classification Water Non-Water Total
Water 22,206 1134 23,340
Non-Water 2216 30,669 32,885
Total 24422 31,803 56,225
PA [%] 90.9 964

UA [%] 95.1 93.3

OA [%] 94.04
Kappa hat 0.878

Feyisa et al. [16] - AWEI ¢, OT=-0.2982

Classification Water Non-Water Total
Water 23,244 1592 24,836
Non-Water 1178 30211 31,389
Total 24422 31,803 56,225
PA %] 95.2 95.0

UA [%] 93.6 96.3

OA [%] 95.1
Kappa hat 0.900
Feyisa et al. [16] - AWElg, OT =-0.1905

Classification Water Non-Water Total
Water 24,019 541 24,560
Non-Water 403 31,262 31,605
Total 24422 31,803 56,225
PA [%] 984 983

UA [%] 97.8 98.7

OA [%] 983
Kappa hat 0.966
NIR band OT=0.128

Classification Water Non-Water Total
Water 24,163 133 24,296
Non-Water 259 31,670 31,929
Total 24422 31,803 56,225
PA [%] 989 99.6

UA [%] 99.5 99.2

OA [%] 99.3
Kappa hat 0.986

AWEIy, of Feyisa et al. [16] exhibited the highest overall
accuracy and kappa hat coefficient of 98.3% and 0.966,
respectively. However, single-band water index of NIR
band unveiled the highest overall accuracy and kappa
hat coefficient of 99.3% and 0.9858, respectively, com-
pared to any multi-band water index applied in this
study. Having accounted all accuracy statistics, NIR band
performed the best followed closely by the AWEILy,
water index of Feyisa et al. [16], thus, these two water
indexes are very comparable.

Conclusions

The non-normalized AWEILy, of Feyisa et al. [16]
adapted 5 out of 6 bands whereby maximizing usage of
the different spectral information of Landsat 8 OLL
With this, it performs better than the normalized water
indexes. However, results of this study have also indi-
cated that NIR band of Landsat 8 OLI can be adapted
more efficiently as a single-band water index compared
to the multi-band water index introduced earlier by

others [13-16]. The superior performance of NIR band
of Landsat 8 OLI as water index can be attributed as
having the narrowest bandwidth compared to bands 2, 3,
4, 6 &7 (Table 1). This feature of NIR band contributed
to its largest difference in reflectance values between
water and non-water bodies making it effective to
discriminate non-water to water bodies as revealed in
Fig. 8. Furthermore, NIR band is more suitable for
elaborating water with considerable vegetation both on
coastal and inland areas. The threshold value for NIR band
in extracting water bodies is conveniently distinguishable
since there is only minimal existence of non-water noise.
Thus, a narrower NIR band as a single-band water index
has the advantage of effectively discriminating water from
non-water bodies. Hence, applying the previous multi-band
water indexes of others [13—16] in extracting a water body
using Landsat 8 OLI added some noise or that reduces
contrast between water and non-water bodies. Addition-
ally, single-band water index using NIR band of Landsat 8
OLI is simpler or less complicated, without requiring raster
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calculation, compared to the multi-band water indexes in-
troduced by those investigators [13—16]. Moreover, this
study shows that an optimum threshold value of the water
index, where highest value of OA and Ky, coefficient were
obtained, is conveniently attainable by creating and imple-
menting a geoprocessing modeler in QGIS that automates
the process from setting of threshold value to accuracy as-
sessment. This study likewise confirms that remote sensing
can extract or delineate water bodies from non-water bod-
ies rapidly, repeatedly and accurately.
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