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Estimating topsoil texture fractions by
digital soil mapping - a response to the
long outdated soil map in the Philippines
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Abstract

Digital soil mapping for soil texture is mostly an understanding of how soil texture fractions vary in space as
influenced by environmental variables mainly derived from the digital elevation model (DEM). In this study,
topsoil texture models were generated and evaluated by multiple linear regression (MLR), ordinary kriging
(OK), simple kriging (SK) and universal kriging (UK) using free and open-source R, System for Automated
Geoscientific Analyses, and QGIS software. Comparing these models is the main objective of the study. The
study site covers an area of 124 km2 of the Municipality of Barili, Cebu. A total of 177 soil samples were
gathered and analyzed from irregular sample points. DEM derivatives and remote sensing data (Landsat 8)
were used as environmental variables. Exploratory analyses revealed no outlier in the data. Skewness and
kurtosis values of the untransformed data vary greatly between –3.85 to 7.20 and 1.8 to 70.7, respectively; an
indication that variables are highly skewed with heavy tails. Thus, Tukey’s ladder of powers transformation was
applied that resulted to normal or nearly normal distribution having skewness values close to zero and
kurtosis values have lighter tails. All data analysis from MLR modeling, variography, kriging, and cross-
validations of models were implemented using the transformed data. Forward selection, backward elimination,
and stepwise selection methods were adapted for predictors selection in MLR. The MLR, OK, SK, and UK were
applied and cross validated for topsoil texture prediction. Likewise, exponential, Gaussian, and spherical
models were fitted for the experimental variograms. Backward elimination method for clay, sand, and silt have
the lowest MAE and highest R2 in MLR. The UK fitted with exponential variogram model has the highest R2

of 0.878, 0.821, and 0.893 for clay, sand, and silt, respectively. These models can be adapted as a decision
support for agricultural land use planning and crop suitability development in the area.

Keywords: Geostatistics, Mountain ridge proximity, Multiple linear regression, Ordinary kriging, Simple kriging,
Universal kriging

Introduction
Dealing with global and regional challenges in land degrad-
ation, food security, water scarcity, and climate change, an
accurate and updated geospatial soil information is impera-
tively needed [1, 2]. These problems are directly related to
soil functions particularly to agricultural productivity, loss
of biodiversity, and provision of water [3]. Producing

accurate and reliable soil maps is indispensable in water-
shed management [4, 5], rangeland management, and land-
scape ecology [6].
The traditional soil survey process is tediously difficult

to update rapidly and accurately. This process has asso-
ciated significant limitations. First, significant changes in
environmental conditions are not readily observed, espe-
cially when processing several variables simultaneously;
secondly, the entire process must be repeated for each
update that makes soil survey updates very inefficient
[7]. Conventional soil survey adapts the manual process
of producing a polygon-based soil map, whereby, with-
out the computer-based approach, the map cannot be
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updated rapidly and accurately as the entire production
procedure must be repeated [7]. Such method is time-
consuming, requires numerous soil samples, and expen-
sive [8]. Geographic information systems (GIS) can over-
come this problem with the application of digital soil
mapping (DSM). The DSM estimates soil properties by
establishing interrelationships between soil properties
and the environmental variables derived mainly from the
digital elevation model (DEM) and remotely sensed images
[8, 9]. Thus, the direction of DSM is toward the generation
of dynamic and replicable geospatial soil information [10].
GIS algorithms have been adapted for an efficient spatial

interpolation technique in land resources inventories [11,
12] in addressing the limitation of the traditional soil sur-
vey. GIS is a tool for data input, handling, analyzing and
output process. It plays a significant role in spatial
decision-making that involves information collection for
DSM. GIS can perform several tasks using both spatial
and attribute data and can integrate a variety of geo-
graphic technologies like Global Positioning System (GPS)
and Remote Sensing (RS). GIS integrates spatial and geos-
tatistical analysis, and the efficient management, storage,
and retrieval of geographic data [8, 9, 13]. Thus, GIS as a
tool plays a significant role in the implementation of a
computer-based spatial decision making support system.
The slow progress in agricultural production and the

steadily increasing population in the Philippines require
the applications of this computer-based decision support
system. The Philippine Department of Agriculture is still
using over 40-year-old soil information in its programs
for climate change mitigation and land use plan [14].
Bureau of Soils and Water Management is still in trad-
itional soil survey method and is yet to implement DSM
[15]. With these enormous challenges, there is an urgent
necessity that soil maps in agricultural areas in the coun-
try be updated applying the modern technology of DSM.
Like most of the parametric test, multiple linear regres-

sion (MLR) requires normally distributed and homosce-
dastic variables [16, 17]. It is helpful for data analysis and
inferences that both dependent and independent variables
that are highly skewed [17, 18], and where standard devia-
tions among variables significantly differ [16] should be
transformed to normal or nearly normal distribution [19].
Thus, in this study, all variables were transformed to meet
the conditions for normal or nearly normal distribution,
minimum error and unbiased estimate [20].
Hence, this study aimed in establishing relationships

between topsoil texture fractions (clay, sand, and silt)
and the environmental variables by applying and com-
paring MLR, ordinary kriging (OK), simple kriging (SK)
and universal kriging (UK) using transformed data inte-
grating the use of free and open source software (FOSS)
of R, System for Automated Geoscientific analyses (SAGA)
GIS, and QGIS.

This study presents a successful approach in DSM
using FOSS that are of best cost advantage to be adapted
by any GIS users from a developing country like the
Philippines. The achieved methodology can lead to valu-
able outcome in achieving a more comprehensive land
use plan since the generated results are useful for water-
shed management particularly for ecological, hydro-
logical, and crop suitability modeling.

Materials and methods
Materials
Synthetic Aperture Radar (SAR) DEM was acquired from
MacDonald, Dettwiler and Associates, British Columbia,
Canada and post-processed by the UP Training Center for
Applied Geodesy and Photogrammetry, through the
DOST-GIA funded Disaster Risk and Exposure Assess-
ment for Mitigation Program which is downloadable
through https://lipad.dream.upd.edu.ph/. This SAR DEM
has 10m resolution and a projection of WGS84 UTM
Zone 51. A cloud-free Landsat 8 image in the study area
was selected and downloaded from the United States Geo-
logical Survey data archive (https://earthexplorer.usgs.gov)
for RS data. The study makes use of an adequate hardware
setup with 32GB multi-core processor, 64-bit operating
system, and solid-state drive to avoid hanging or crashing
[21] necessary for GIS and RS processing.

The study area
Barili, the study area, is a second income class munici-
pality, with an annual income of ₱45M (0.87M USD) or
more but less than ₱55M (1.06M USD), in the southern
part of Cebu Province, Philippines. The municipality has
a population of 73,862 based on 2015 census. Barili is lo-
cated 60 km southwest of Cebu City (Fig. 1). It has an
area of about 124 km2 (about 9.5 × 13 km) with mostly
agricultural lands. The elevation ranges from sea level to
540m. It is bordered to the northeast with Carcar City
and Sibonga; to the southwest with Dumanjug and the
west lies the Tañon Strait; and to the northwest with Alo-
guinsan. Mountain ridgeline separates the watersheds of
Barili in the west and Carcar City and Sibonga in the east.

Soil sampling, preparation, and analysis
A total of 177 soil samples were collected within the
Municipality of Barili, Cebu, Philippines. A pit measuring
approximately 1 × 1 × 1m was dug manually in each
physiographic position to examine and sample the soil
profile. About 2 kg of composite soil sample were obtained
from every horizon of each soil profile. Soil sampling was
done randomly as shown in Fig. 1. Soil samples were air
dried, freed of rocks and plant materials, ground using a
wooden mallet and allowed to pass through a 2-mm sieve.
Soil texture analyses were done at the Regional Soils
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Laboratory, Department of Agriculture, Regional Field Of-
fice VII, Cebu City, Cebu, Philippines.

Environmental predictors
A total of 37 parameters were generated and analyzed to
understand their relationship with soil texture proper-
ties. Environmental variables or predictors were the pre-
processed sink-filled or depressionless DEM and its
derivatives, geographic coordinates, and RS data as
shown in Table 1. Majority of the predictors were gener-
ated from the preprocessed sink-filled DEM using SAGA
GIS modules for basic terrain analysis, terrain analysis–
channels, terrain analysis–hydrology, terrain analysis–
morphometry, and terrain analysis–lighting. The predic-
tors include (i) 7 parameters by basic terrain analysis
module such as analytical hillshading, aspect, channel
network base level, slope length and steepness (LS) fac-
tor, profile curvature, slope, and valley depth; (ii) 4 pa-
rameters by terrain analysis–channels such as overland
flow distance, horizontal overland flow distance, vertical
overland flow distance, and vertical distance to channel
network; (iii) 3 parameters by terrain analysis–hydrology
such as catchment area, flow accumulation, and SAGA
wetness index; (iv) 7 parameters by terrain analysis–
morphometry such as curvature classification, mass bal-
ance index, mid slope position, multiresolution index of
valley bottom flatness (MRVBF), normalized height,
slope height, and terrain ruggedness index; (v) 1 param-
eter by terrain analysis–lighting such as sky view factor.
Furthermore, slope steepness (S) factor for universal soil
loss equation (USLE) was generated applying

r.watershed module of geographic resources analysis
support system in QGIS. Mountain ridge proximity
and stream proximity were generated using proximity
grid module of SAGA GIS. Location of samples by
their latitude and longitude, determined by GPS, were
also included as predictors.
Remotely sensed image of operational land imager

(OLI) and thermal infrared sensor (TIRS) instruments of
Landsat 8 on the study area dated July 27, 2017 were
also considered as additional predictors and was pre-
processed using the semi-automatic classification plugin
(SCP) using QGIS. The remotely sensed predictors in-
clude 7 bands (bands 1 to 7) of OLI and 2 bands (band
10 and 11) of TIRS.

Preprocessing of remotely sensed data
The SCP for QGIS was applied for Landsat 8 conver-
sion to top of atmospheric reflectance and brightness
temperature, and pansharpening [27]. Multispectral
image analysis requires conversion of its “quantized
and calibrated scaled digital numbers” [23] to top of
atmosphere reflectance in order to achieve clear
Landsat scenes [28] which is packaged in SCP. Pre-
processing of Landsat 8 image was discussed in de-
tails by Congedo [27] and in the study by Mondejar
and Tongco [29].

Exploratory data analysis
The exploratory data analysis consisted of three steps
and was performed in R with contributing packages
‘rcompanion’ for plotting histogram and performing

Fig. 1 The location of the Municipality of Barili (natural color composite) as the study area in the Province of Cebu. The distribution of samples
(magenta), and the mountain ridgeline (red)
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Tukey’s ladder of power transformations; ‘moments’ for
determining skewness and kurtosis; ‘nortest’ for deter-
mining different normality tests. Step 1: statistical data
distribution was checked by plotting its histogram. Step
2: determination of skewness and kurtosis before data
transformation. And Step 3: perform Tukey’s ladder of
power transformation.

Transformation of data
Normal distribution of data is an assumption in geostatisti-
cal analyses similar to several statistical techniques [16, 17,
30, 31]. In instances of non-normality, especially for
strongly skewed data, data transformation to normality or
at least symmetric distribution is needed [30, 31]. Normality
test of the data can be implemented by simple evaluation of
its skewness (close to 0) and kurtosis (close to the range of
1 to 3), normal q-q plot, and inferential test for normality
such as Shapiro-Wilk or Kolmogorov-Smirnov tests [32].
Soil texture fractions and all of the predictors were

transformed applying Tukey’s ladder of powers trans-
formation in R to ensure normality or near normality of
dependent and independent variables. In this study,
skewness and kurtosis evaluation were applied. The
Tukey’s ladder of powers transformation is defined as:

y ¼
xλ if λ > 0
logx if λ ¼ 0
− xλ
� �

ifλ < 0

8<
:

9=
; ð1Þ

where λ is the power coefficient parameter in transform-
ing values of a parameter to follow a normal distribution
as close as possible [17, 33]. In the rcompanion package,
Shapiro-Wilk tests were performed iteratively and deter-
mine lambda value “that maximizes the W statistic” [17].
Furthermore, loop function in R was adapted to deter-
mine a particular transformation that had a distribution
with skewness as close to zero and kurtosis as close to
the range between 1 to 3.

Predictive models
The procedures tested to predict soil properties (sand,
silt, and clay) were MLR, OK, SK and UK. The geostatis-
tical procedures were implemented in SAGA GIS soft-
ware [34]. MLR has been widely used to predict the
response of a dependent variable from a set of independ-
ent variables, as a function of the correlations between
them. The MLR analyses were executed in SAGA GIS
applying forward selection, backward elimination, and
stepwise selection methods, fitting the model by identify-
ing variables which have most significance according to
95% confidence level.

MLR for prediction
Multiple regression seeks to determine the equation that
best predicts the dependent variable Y as a linear function
of a set of independent variables X where the linear rela-
tionship is expressed as:

Ŷ ¼ aþ b1X1 þ b2X2 þ b3X3…:þ ϵ ð2Þ
where Ŷ is the estimated value of Y for a given set of X
values; a is the intercept; b1 is the estimated slope (par-
tial regression coefficient) of a regression of Y on X1,
considering the rest of X variables to be held constant,
likewise for b2, b3, and so on; and ϵ is the error term
[16]. In this study, the coefficient of multiple determin-
ation (R2) is considered in the goodness-of-fit of a linear
model for cross validation of models determined by the
following equation as:

R2 ¼
Pn

i¼1 ŷi− y0ð Þ2Pn
i¼1 yi− y0ð Þ2 ð3Þ

where ŷi as the predicted or fitted values of the dependent
variable, y0 is the mean of the observed values of the
dependent variable, yi as the observed values of the
dependent variable, and n is the number of observed
values of the data set.

Relative importance of environmental predictors
Relative importance is the “quantification of an individ-
ual regressor’s contribution to a multiple regression
model” [35]. In this study, relative importance metrics
are forced to percentages or summed to 100%. Gromp-
ing [35] calls this “lmg” as proposed by Lindeman et al.
[36]. This is achieved using package “relaimpo” in R by
the following code: calc.relimp (linmod, type = c(“lmg”),
rela = TRUE).

Geostatistical analyses
Geostatistical analyses in this study were done making use
of SAGA GIS 7 adapting the spatial and geostatistics-
kriging module for grid interpolation from irregular
sample points with variogram dialog. DSM is one of
the many useful applications in SAGA GIS for soil
science [34]. Variogram models were first generated
before kriging techniques for the predictive models of
soil fractions.

Semivariogram Kriging is based on the idea of spatial
correlation or dependence that the degree of influence
of observed points to unobserved points is inversely re-
lated to distance [20, 37, 38]. The first essential step in kri-
ging is the calculation of empirical variogram before any
geostatistical interpolation. In this study, isotropic semi-
variogram is determined considering only on the effect of
h [39]. A semivariogram model estimates the relationship
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between semivariances or the differences between neigh-
boring values and separation distance [40], such as the
spherical or exponential models. The empirical semivario-
gram formula is as follows:

γ hð Þ ¼ 1
2N hð Þ

XN hð Þ
i¼1

Z xi þ hð Þ − Z xið Þ½ �2 ð4Þ

where γ(h) is the semivariance of the lag distance be-
tween two sample points; N(h) is the number of observa-
tion pairs of random variables separated by distance h;
and Z(xi) and Z(xi + h) are the values of variables located
at xi and xi + h, respectively [39, 41, 42]. The empirical
semivariogram for each soil texture fraction was fitted
with theoretical semivariogram models in SAGA GIS
using its variogram module. In this study, the spherical,
exponential and Gaussian models were fitted into the
empirical variograms for the dependent soil fraction var-
iables (clay, sand, silt).
Spherical:

γ hð Þ ¼ 0 if h ¼ 0 ð5Þ

γ hð Þ ¼ nþ s − nð Þ 3h
2r

−
1
2

h
r

� �3
" #

if 0 < h < r ð6Þ

γ hð Þ ¼ nþ s − nð Þ if h > r ð7Þ
Exponential:

γ hð Þ ¼ nþ s − nð Þ 1− exp −
h
r

� �� �
ð8Þ

Gaussian:

γ hð Þ ¼ nþ s − nð Þ 1− exp −
h
r

� �2
 !" #

ð9Þ

where n is the nugget effect at zero distance h, s is the
sill, and r is the range [39, 43–45].

SK Generally, weighted average of observed data points is
an approach of spatial interpolation that is expressed as:

γ hð Þ ¼ 1
2N hð Þ

XN hð Þ
i¼1

Z xi þ hð Þ − Z xið Þ½ �2 ð10Þ

The empirical semivariogram for each soil texture frac-
tion was fitted with theoretical semivariogram models in
SAGA GIS using its variogram module. In this study, the
spherical, exponential and Gaussian models were fitted
into the empirical variograms for the dependent soil frac-
tion variables (clay, sand, silt). The approximation of SK is
based on the equation:

ẑsk xoð Þ ¼
Xn

i¼1
λiz xið Þ þ 1−

Xn

i¼1
λi

h i
μ ð11Þ

where μ is a given stationary mean of the observed
values that is assumed to remain constant throughout
the domain, λi is the kriging weight assigned at sampled
locations [31, 46, 47] wherein the kriging weights are es-
timated by minimizing the variance [46].

OK The OK is analogous to SK but OK involves that
the summation of weights equals to one, such that ½1−Pn

i¼1λi� ¼ 0, with an accompanying Lagrange parameter
ψ. Additionally, μ is not constant but it is recalculated
within the search window across the modeled area of
interest [46, 47]. Eventually, OK is estimated as:

ẑok xoð Þ ¼
Xn

i¼1
λiz xið Þ ð12Þ

In order to obtain unbiased estimations for OK, the
following equations are solved simultaneously:Xn

j¼1
λ jγ xi; x j
� �þ ψ ¼ γ xi; x0ð Þ ð13Þ

Xn

j¼1
λ j ¼ 1 ð14Þ

where γ(xi, xj) is the value of the variogram between two
points xi and xj, ψ and is the Lagrange parameter for the
minimization of kriging variance [31, 37, 41].

UK OK and SK assume stationary process considering
the mean. However, in other cases, spatial data are not
stationary in the mean [31, 48] which is being consid-
ered in UK. Geostatistical literatures have used the terms
UK, kriging with external drift, and regression kriging
that are essentially adapting similar techniques [40, 49].
In UK, prediction at unvisited location is estimated by
combining the predicted drift and residuals as:

ẑ x0ð Þ ¼ u x0ð Þ þ ê x0ð Þ ð15Þ

where drift or trend u(x0), a linear regression mean, is fit-
ted by linear regression analysis, and êðx0Þ is the interpo-
lated residuals [40, 44, 49]. The trend can be expressed as
a functional form:

u xð Þ ¼
XK

k¼0
βk f k xð Þ ð16Þ

where βk, k = 0, 1, …, K are unknown coefficients
while fk(x) are known functions of x [31, 48]. In this
study, the best model resulted from MLR analyses for
each soil fraction was applied and predictions at un-
observed locations are estimated by the following
equation:
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ẑuk xoð Þ ¼
Xn

i¼1
λi
XK

k¼0
βk f k xið Þ þ ê xið Þ

� 	
ð17Þ

Cross validation
Cross validation technique was adopted for evaluating
and comparing the performance of models. The models
were evaluated applying k-fold cross validation due to
the absence of validation data set and small size of ob-
served samples for model validation [50, 51]. In this
study, 5-fold cross validation was adapted. There is no
strict rule on the choice of k, but 5 or 10 is usually ap-
plied [51]. Cross validation of models was done in R ap-
plying caret package. The mean absolute error (MAE),
root mean squared error (RMSE), and R2 were deter-
mined to evaluate the accuracy of models [8, 52, 53].

MAE ¼ 1
n

X1

i¼n
yi − ŷij j ð18Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 yi − ŷið Þ2
n

s
ð19Þ

where yi is observed value, ŷi is the predicted value, and
n is the number of samples.
Additionally, MLR models require homoscedasticity

and normality of residuals [6, 54]. Thus, a scatter plot of
residuals and predicted values were visually evaluated
for homoscedasticity using plot function where a hori-
zontal line at zero was added using abline function in R.
Additionally, its normality test (skewness, kurtosis, Lillie-
fors test) along with its quantile-quantile (QQ) plot was
determined in R applying plot diagnostics of plot func-
tion. Hence, homoscedasticity and normality of residuals
were critical validation criteria as being meet by each
model in this study.

Results and discussion
Exploratory data analyses
In this study, geostatistical analysis of data started with
summary statistics, data transformation (Table 2), MLR
modeling, variography, kriging, and mapping. The explora-
tory analysis revealed no outlier in the soil texture fractions
(clay, sand, silt) and environmental variables. Thus, all 177
samples were used for the spatial interpolation. A statistical
summary of the untransformed environmental variables
(Table 1) shows high coefficient of variation between
−3609 to 224.7%. Skewness and kurtosis values vary greatly
between −3.85 to 7.20 and 1.77 to 70.7, respectively. Indi-
cating that the variables are highly skewed with heavy tails,
thus, do not fit the normality assumption. The Tukey’s lad-
der of powers transformation was applied in transforming

the data that resulted in normal or nearly normal distribu-
tion having skewness values close to zero and kurtosis
values have thinner tails (Table 2). Consequently, all data
analyses from MLR modeling, variography, kriging, and
cross validations of models were implemented using the
transformed data.

MLR modeling
The MLR analyzed the relationships between the trans-
formed topsoil texture fractions and the transformed envir-
onmental variables. Table 3 shows the MLR results where
forward selection, backward elimination, and stepwise
selection methods were applied and cross-validated. At this
stage, MLR established correlation between transformed
dependent and independent variables. The dependent vari-
ables were the transformed values of soil texture fractions
and the independent variables were the transformed values
of environmental predictors. All predictors selection
methods in MLR, in this study, revealed Lilliefors test
values greater than 0.05. These were indications that the
transformation of values both for dependent and inde-
pendent variables resulted in an improvement of normality
and variance stability [19], minimum error and unbiased
estimate [20]. The predictors of selection methods with
most homogeneity of variance (homoscedasticity) in terms
of residuals were adapted as predictor grids, respectively,
for clay, sand and silt fractions for UK as implemented in
SAGA. The cross validation of MLR models are shown in
Table 3 and their relative importance will be subsequently
discussed.

Cross validation of MLR models
Prior to kriging, evaluation of regression models was im-
plemented. Table 3 shows the cross validation of models
applying different regression selection methods and the
normality statistics of residuals. The MAE, RMSE,
homoscedasticity and normality (skewness, kurtosis and
Lilliefors test) test of residuals were considered in asses-
sing the accuracy performance of linear predictive models.
Homoscedasticity and normality test of residuals were ap-
plied in order to verify and satisfy the assumption of
homogeneity of variance [54] towards choosing the best
linear unbiased estimator. All results of the regression
models were coupled with kriging for the implementation
of UK to further evaluate their performance and be able
to determine the best unbiased models. Stepwise selection
method has the advantage of having the least number of
significant predictors, while forward selection method had
the lesser number of significant predictor compared to
backward elimination method.
Based on error metrics, performance of forward and

stepwise selection methods for clay fraction were the
same because they revealed the same significant predic-
tors; this was also observed for sand fraction. Backward
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Table 2 Descriptive statistics of transformed variables and the corresponding transformation

Parameters Tukey’s power transformation Minimum Median Mean Maximum CV (%) Skewness Kurtosis

Dependent Variables

Clay (x - 5)^(0.375) 6.54 8.46 8.44 10.01 9.23 0.000 2.20

Sand (x)^(0.3) 1.56 2.47 2.47 3.51 16.52 −0.009 2.39

Silt (63 - x)^(0.5) 4.05 5.75 5.76 7.28 11.25 −0.054 2.67

Independent Variables or Predictors

Analytical hillshading (x + 2)^(0.075) 1.06 1.08 1.08 1.11 0.82 0.002 3.30

Aspect x 0.12 3.28 3.23 6.28 56.45 −0.041 1.79

Catchment area -(x - 12)^(−0.075) −0.71 −0.60 −0.60 −0.45 −9.13 0.005 2.47

Channel network base level (x + 1)^(0.125) 1.24 1.70 1.68 2.20 15.01 0.175 1.71

Curvature classification (23 - x)^(1.6) 76.16 113.98 114.87 150.93 19.82 −0.058 1.75

Elevation log10(x) 0.64 1.83 1.76 2.73 30.02 0.024 1.60

Flow accumulation (x - 15)^(0.075) 1.40 1.66 1.65 2.238 11.38 0.207 2.34

Landsat 8 Band 1 -(−x)^(−1) 12.54 23.61 24.00 31.39 11.17 0.108 5.01

Landsat 8 Band 10 (x - 13)^(0.375) 1.25 1.54 1.52 1.86 6.06 −0.093 4.30

Landsat 8 Band 11 (x - 10)^(0.125) 0.97 1.09 1.09 1.19 2.89 −0.018 4.53

Landsat 8 Band 2 -(x)^(−0.8) −15.75 −11.98 −12.13 −7.82 −11.63 −0.016 3.40

Landsat 8 Band 3 -(x)^(−0.55) −5.28 −4.42 −4.45 −3.46 −7.48 0.006 3.14

Landsat 8 Band 4 -(x)^(−0.375) −3.37 −2.86 −2.89 −2.36 −6.83 −0.029 2.69

Landsat 8 Band 5 -(x + 1)^(−2.475) −0.59 −0.49 −0.49 −0.36 −8.27 0.008 3.11

Landsat 8 Band 6 -(x + 1)^(−10) −0.32 −0.21 −0.21 −0.07 −20.91 0.022 2.95

Landsat 8 Band 7 -(x)^(−0.725) −8.06 −6.01 −6.05 −3.76 −11.85 −0.037 3.34

Latitude log10(x) 6.05 6.05 6.05 6.05 0.02 0.319 3.27

Longitude log10(x) 5.74 5.75 5.75 5.75 0.03 0.190 3.26

LS factor log10(x) −1.52 −0.74 −0.81 1.03 −86.99 0.398 1.95

Mass balance index (3.4 - x)^(1.525) 4.74 6.48 6.51 8.16 12.97 −0.066 2.12

Mountain ridge proximity (x)^(0.95) 159.10 3124.60 2895.20 6592.80 46.60 0.016 3.08

MRVBF (x - 3)^(3) −27.00 −27.00 −14.58 8.00 −89.63 0.253 1.36

Mid-slope position -(x - 3)^(−4) −0.06 −0.03 −0.03 −0.01 −36.45 0.005 1.81

NDVI -(x - 1)^(−1) 1.79 3.36 3.36 5.18 19.03 0.062 2.48

Normalized height -(x + 2)^(−7.575) 0.00 0.00 0.00 0.00 −62.97 −0.004 1.54

Overland flow distance (x + 10)^(0.075) 1.23 1.32 1.32 1.42 3.59 0.000 2.14

Profile curvature -(x + 1)^(−10) −1.11 −1.00 −1.00 −0.89 −3.68 0.176 3.64

S factor log10(x) −1.52 −0.78 −0.89 0.52 −68.47 0.208 1.57

SAGA wetness index (x - 2)^(0.475) 1.80 2.49 2.47 3.13 12.80 −0.026 2.06

Sky view factor -(1 - x)^(−0.125) −2.72 −1.91 −1.88 −1.31 −11.82 0.011 3.82

Slope (x)^(0.475) 0.00 2.14 2.12 4.91 45.98 0.098 3.11

Slope height (x - 1)^(0.075) 0.75 1.10 1.09 1.40 12.23 −0.048 2.06

Stream proximity (x + 6)^(0.125) 1.33 2.03 2.03 2.75 18.65 −0.036 1.83

Terrain ruggedness index -(x + 1)^(−0.85) −1.00 −0.66 −0.66 −0.26 −25.45 0.038 2.47

Valley depth -(x + 3)^(−0.325) −0.65 −0.42 −0.42 −0.18 −22.37 0.017 2.89

Vertical distance to channel network (x)^(0.3) 0.00 0.55 0.54 1.10 52.97 −0.075 2.10

Vertical overland flow distance (x)^(0.175) 0.65 1.15 1.14 1.60 16.23 −0.043 2.81
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Table 3 Cross validation of models by MLR applying different predictors selection methods

Texture
fraction

Selection
method

Predictors MAE RMSE R2 Residuals Normality statistics

Skewness Kurtosis aLilliefors

Clay

Forward 4 0.324 0.409 0.2871 −0.252 3.201 0.9187

Backward 7 0.319 0.406 0.2974 −0.223 3.276 0.8696

Stepwise 4 0.324 0.409 0.2871 −0.252 3.201 0.9187

Sand

Forward 4 0.294 0.365 0.1984 0.080 2.946 0.7153

Backward 6 0.293 0.358 0.2298 0.111 2.865 0.3559

Stepwise 4 0.294 0.365 0.1984 0.080 2.946 0.7153

Silt

Forward 5 0.438 0.566 0.2343 −0.670 3.616 0.0833

Backward 5 0.435 0.565 0.2363 −0.563 3.496 0.0618

Stepwise 4 0.443 0.569 0.2246 −0.513 3.372 0.2074
aLilliefors normality test (Kolmogorov-Smirnov)

Fig. 2 Residuals plots of multiple linear regression models applying forward (F) selection, backward (B) elimination, and stepwise (S) selection methods
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elimination method had the least MAE and RMSE for
each of the soil texture fractions, and, consequently, it
has the highest R2 (Table 3). Figure 2 shows scatter plots
of residuals and predicted values for homoscedasticity
examination. As can be observed in any of the residuals
plots, homoscedasticity was not violated by any of the
regression models applying forward selection, backward
elimination, and stepwise selection methods for clay,
sand, and silt texture fractions as linearity (red lines) as-
sumption was met having no obvious pattern wherein
the residuals scattered randomly and symmetrically clus-
tering towards the middle of the plot. For a graphic
examination of the normality of residuals, Fig. 3 shows
QQ-plots of residuals of the MLR models applying for-
ward selection, backward elimination, and stepwise selec-
tion methods. Graphically, different selection methods
revealed similar distribution of residuals where, generally
noticeable, most of the points fall closely either below or
above the reference line (red), and no obvious presence of
outliers. The regression models for sand fraction have the
most points that lie very close to the reference (red) line.

This was also statistically confirmed in cross validation
statistics (Table 3) where sand fraction regression models
have the least skewness and kurtosis values. Nevertheless,
none of the residuals distribution deviates greatly from
normality and that residuals of all regression models are
statistically normally distributed based on Lilliefors nor-
mality test (Table 3).

Relative importance of predictors
Figure 4 shows that stream proximity, elevation, moun-
tain ridge proximity, channel network base level, flow
accumulation, band 4, band 11, catchment area, vertical
overland flow distance, overland flow distance, slope,
and curvature classification were the significant predic-
tors in this study.
Stream proximity was found to be the most important

predictor in this study. Pahlavan-Rad and Akbarimo-
ghaddam [8] found stream proximity or distance from
the river as the most important variable in the spatial
variability of soil texture fractions in a flood plain. For
clay fraction, elevation, mountain ridge proximity, and

Fig. 3 QQ plots of residuals of the multiple linear regression models applying forward (F) selection, backward (B) elimination, and stepwise (S)
selection methods
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channel network base level were about equally second
most important predictors. Likewise, slope and stream
proximity were about equally important for silt. Moun-
tain ridge proximity or distance to the mountain ridge is
a predictor probably first introduced by this study for
DSM for soil texture fractions prediction. Mountain ridge-
line is a peak elevation line that delineates watersheds at
opposite sides of a mountain (leeward and wayward). The
results suggest that stream proximity, mountain ridge
proximity, and slope are the most important predictors
that influence topsoil texture spatial variation, particularly
for clay and sand fractions, in the study area. Remotely
sensed data, such as Landsat 8, where band 4 and band 11
were found important, pointed out that optical imagery
are potential auxiliary variables in enhancing prediction of
topsoil texture fractions [37]. Flow accumulation, as in the
study conducted by Castro-Franco et al. [22], was also the

least important in the spatial variability of silt fraction at
the southern Argentine Pampas.

Geospatial interpolation
After knowing significant predictors for each of the soil
texture fractions (clay, sand, and silt), predictions of soil
texture fractions were further evaluated applying kriging
techniques. Likewise, linear regression was enhanced by
combining regression with kriging. Prior to kriging, for
every soil fraction, the experimental semivariogram was
determined to examine the spatial dependence of
dependent variables within the observed data points [6].
As a variogram model was required for geo-statistical
interpolation, the variogram models that related to the
best results in cross validation were the best fitted vario-
gram models correspondingly for clay, sand, and silt.
Hence, predefined models such as exponential, Gaussian,

Fig. 4 Relative importance of predictors
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and spherical were fitted to the empirical semivario-
grams (Table 4 and Fig. 5). The mentioned variography
was done in SAGA applying its variogram module.

Semivariogram
The nugget to sill (N:S, C0/[C0 +C]) ratio or its complemen-
tary structured part to sill ratio is considered as a spatial de-
pendency criterion of a semivariogram [6]. The smaller the
N:S ratio or the higher the structured part to sill ratio, the
stronger the spatial dependency or autocorrelation [6, 55].
The N:S ratios for clay, sand, and silt varies within 0.11–
0.22, 0.14–0.24, and 0.08–0.17, respectively, for the three
variogram models (Table 4). These indicated that topsoil
texture fractions have a strong spatial dependency, especially
for silt, considering that N:S ratios are lesser than 0.25 [6,
55, 56]. Nugget effects of exponential and spherical models
were lesser than the Gaussian model. Effective range of ex-
ponential, Gaussian, and spherical were ascending in order.
Effective ranges of exponential and Gaussian models do not
differ greatly, while effective range of spherical model is
more or less twice the Gaussian model.

Performance of kriging techniques
The variogram parameters, as shown in Table 4, were
adapted for OK, SK, and UK. All linear regression models
considered in this study were coupled with UK. In the
same manner, the performance of OK, SK, and UK apply-
ing exponential, Gausian, and spherical variaogram models
were cross validated in terms of MAE, RMSE, and R2 sep-
arately for clay, sand, and silt texture fractions (Tables 5, 6
and 7). Since forward and stepwise selection methods re-
vealed the same significant predictors for clay and, likewise,
for sand for the MLR (Table 3), UK-Stepwise in Tables
5 and 6 also represent UK-Forward for clay and sand,
respectively.

Fig. 5 Best fitted variogram models (red) for clay, sand, and silt

Table 4 The variogram parameters of soil texture fractions applying exponential, Gaussian and exponential models

Soil Texture fraction Semivariogram model Nugget effect, C0 Sill [C0 + C] Nugget-to-sill ratio
(C0/[C0 + C])

Structured part-to-sill ratio
(C/[C0 + C])

Effective range

Clay

exponential 0.04 0.28 0.15 0.85 1560

Gaussian 0.06 0.28 0.22 0.78 1900

spherical 0.03 0.28 0.11 0.89 3800

Sand

exponential 0.03 0.21 0.14 0.86 2360

Gaussian 0.05 0.21 0.24 0.76 2920

spherical 0.03 0.21 0.14 0.86 5600

Silt

exponential 0.04 0.48 0.08 0.92 1250

Gaussian 0.08 0.48 0.17 0.83 1570

spherical 0.04 0.48 0.08 0.92 3490
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Generally, kriging techniques (Tables 5, 6 and 7) have
better prediction accuracy than the linear regression
models (Table 3) in terms of MAE, RMSE, and R2. The
performance of kriging techniques fitted with exponential
or spherical variogram models was comparable, while kriging techniques fitted with Gaussian models were like-

wise at par (Tables 5, 6 and 7). As observed, kriging tech-
niques fitted with Gaussian models have low prediction
accuracy compared to kriging techniques fitted with expo-
nential or spherical variogram models. Comparing MLR
with kriging techniques, the respective MAE of clayMLR,
sandMLR, and siltMLR were about 2.5, 2, and 2.8 times as
high compared to kriging techniques fitted with exponen-
tial or spherical variogram models. Similarly, MAEs of
clayMLR, sandMLR, and siltMLR were about 1.4, 1.2, and 1.6
times as high compared to kriging techniques fitted with
Gaussian variogram model. In other words, R2 values of
kriging techniques with exponential or spherical variogram
model were about 3, 3.8, and 3.8 times as high compared
to clayMLR, sandMLR, and siltMLR, respectively, while, R

2 re-
sults of kriging techniques with Gaussian variogram model
were about 2.1, 2, and 3.1 times as high compared to
clayMLR, sandMLR, and siltMLR. Kriging technique with
Gaussian variogram model had the least performance
among the different kriging techniques applied in this
study.
For clay texture fraction, UK with predictors by back-

ward elimination method and exponential variogram
model (ClayUK-back-expo) revealed the lowest MAE and
RMSE of 0.126 and 0.178, respectively. Consequently,

Table 6 Cross validation of OK, SK, and UK applying
exponential, Gaussian, and spherical variogram models applied
to Sand texture fraction

Spatial Interpolation Variogram model MAE RMSE R2

OK

exponential 0.141 0.190 0.8198

Gaussian 0.253 0.318 0.3982

spherical 0.161 0.210 0.7741

SK

exponential 0.142 0.190 0.8199

Gaussian 0.254 0.318 0.3980

spherical 0.161 0.210 0.7742

UK – Stepwise

exponential 0.139 0.187 0.8160

Gaussian 0.245 0.305 0.4429

spherical 0.157 0.206 0.7718

UK – Backward

exponential 0.138 0.183 0.8213

Gaussian 0.242 0.299 0.4640

spherical 0.155 0.202 0.7788

Table 7 Cross validation of OK, SK, and UK applying
exponential, Gaussian, and spherical variogram models applied
to Silt texture fraction

Spatial Interpolation Variogram model MAE RMSE R2

OK

exponential 0.144 0.230 0.8868

Gaussian 0.279 0.375 0.6835

spherical 0.178 0.259 0.8607

SK

exponential 0.144 0.230 0.8864

Gaussian 0.278 0.375 0.6822

spherical 0.177 0.259 0.8601

UK – Forward

exponential 0.141 0.221 0.8926

Gaussian 0.268 0.345 0.7308

spherical 0.172 0.247 0.8689

UK – Backward

exponential 0.141 0.221 0.8929

Gaussian 0.267 0.345 0.7311

spherical 0.172 0.246 0.8691

UK – Stepwise

exponential 0.141 0.221 0.8926

Gaussian 0.268 0.344 0.7324

spherical 0.172 0.246 0.8690

Table 5 Cross validation of OK, SK, and UK applying exponential,
Gaussian, and spherical variogram models applied to Clay texture
fraction

Spatial
Interpolation

Variogram model MAE after kriging RMSE R2

OK

exponential 0.130 0.186 0.8741

Gaussian 0.234 0.312 0.5917

spherical 0.134 0.191 0.8631

SK

exponential 0.130 0.186 0.8732

Gaussian 0.234 0.312 0.5903

spherical 0.134 0.191 0.8625

UK – Stepwise

exponential 0.128 0.182 0.8736

Gaussian 0.223 0.296 0.6288

spherical 0.133 0.187 0.8639

UK – Backward

exponential 0.126 0.178 0.8780

Gaussian 0.219 0.289 0.6463

spherical 0.131 0.183 0.8690
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Clay-UK-back-expo exhibited the highest R2 of 0.878 among
the models presented in (Table 5). Moreover, graphical
evaluation of residuals revealed significant improvement
from MLR to UK. Residuals by UK reduced significantly
closer towards the red line (Fig. 6). Thus, ClayUK-back-expo
was considered the final model for transformed clay tex-
ture fraction as shown in Fig. 7, while Fig. 8 represents
the final model of clay after back transformation.
Likewise, for sand texture fraction, UK with predictors

by backward elimination method and exponential vario-
gram model (SandUK-back-expo) revealed the lowest MAE
and RMSE of 0.138 and 0.183, respectively. Consequently,
SandUK-back-expo exhibited the highest R2 of 0.821
among the models presented in (Table 6). Further-
more, graphical visualization of residuals has shown
significant improvement from MLR to UK. Residuals
by UK reduced significantly closer towards the red
line (Fig. 6). Thus, SandUK-back-expo was considered
the final model for sand texture fraction as shown in
Fig. 9, while Fig. 10 represents the final model of
sand after back transformation.

Similarly, for silt texture fraction, UK with predic-
tors by backward elimination method and exponential
variogram model (SiltUK-back-expo) revealed the lowest
MAE and RMSE of 0.141 and 0.221, respectively.
Consequently, SiltUK-back-expo exhibited the highest R2

of 0.8929 among the models presented in (Table 7).
Moreover, graphical evaluation of residuals revealed
significant improvement from MLR to UK. Residuals
by UK reduced significantly closer towards the red
line (Fig. 6). Thus, SiltUK-back-expo was considered the
final model for silt texture fraction as shown in Fig. 11,
while Fig. 12 represents the final model of silt after back
transformation.
For the three soil texture fractions of clay, sand, and

silt, UK with predictors by backward elimination method
and exponential variogram model performed the highest
predictive accuracy. This is an indication that the data-
sets are characterized by a linear trend, thus, UK is rec-
ommended to attain more fitting mapping results [44].
Nevertheless, performance of UK with predictors by
stepwise selection method and exponential variogram
model for clay, sand, and silt texture fractions was at par
as shown from Tables 5, 6 and 7. Thus, UK can be consid-
ered a hybridized geospatial interpolation technique that
coupled significant predictors from regression model and
variography of regression residuals [57, 58]. However, in
general, performance of OK and SK was comparable to
UK (Tables 5, 6 and 7). Hence, for a straightforward and
immediate estimate, OK and SK can be adapted [49]. Fur-
thermore, it is observed that the stronger the spatial de-
pendency or autocorrelation, the higher the R2. Hence,
high R2 values of OK, SK, and UK were strongly attributed
to high spatial dependency or autocorrelation.

Conclusions
Comprehending geographical distribution and accurate
predictive mapping of topsoil texture fractions at a mu-
nicipal scale are essential for watershed management,
soil and water conservation, hydrological and crop suit-
ability modeling. This fundamental soil texture geo-
information processing approach is among the vital steps
towards attaining a comprehensive land use plan. Spatial
and geostatistics modeling, specifically MLR and kriging
techniques (OK, SK, and UK), were fitted to predict top-
soil texture fractions particularly for clay, sand, and silt.
Data from sink-filled DEM derived environmental vari-
ables combined with remotely sensed images of Landsat
8 generated satisfactory results. Mountain ridge proxim-
ity, not considered among the predictors in DSM before
but now, was found to be a significant predictor in this
study. Further investigation should be conducted on the
other side of the mountain ridge to understand better its
predictive importance. Geospatial interpolations by kri-
ging techniques were more accurate than MLR. The OK,

Fig. 6 Homoscedasticity and improvement of residuals from
multiple linear regression (MLR) with backward selection method to
universal kriging (UK) with exponential variogram applied to Clay,
Sand, and Silt texture fractions

Mondejar and Tongco Sustainable Environment Research           (2019) 29:31 Page 15 of 20



Fig. 7 Final Model of Transformed Clay by UK with predictors by backward elimination method and exponential variogram

Fig. 8 Final Model of Clay after back transformation
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Fig. 10 Final Model of Sand after back transformation

Fig. 9 Final Model of Transformed Sand by UK with predictors by backward elimination method and exponential variogram
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Fig. 11 Final Model of Transformed Silt by UK with predictors by backward elimination method and exponential variogram

Fig. 12 Final model of Silt after back transformation
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SK, and UK fitted with Gaussian variogram model were
less suitable for predicting soil texture fractions whereas,
UK coupled with predictors by backward elimination
method and fitted with exponential variogram portrayed
the most accurate in predicting topsoil texture fractions
for clay, sand, and silt compared to any of the spatial
and geostatistical modeling applied in this study. The
results show that the transformation of dependent and
independent variables provides homoscedasticity and
normality of residuals to ensure unbiased estimation.
With the significant cost advantage of this study on the
use of FOSS, the models obtained by DSM revealed several
benefits particularly in storing, retrieving and reproducing
reliable geospatial information and ease of updating data
and analysis. This study presents a successful approach in
DSM with the use of SAGA GIS, QGIS, and R that are of
best cost advantage to be adapted by any GIS users from a
developing country like the Philippines. Moreover, add-
itional soil samples and field validations of results are rec-
ommended for future research with the aim of improving
accuracy and reliability of the models. Likewise, application
of DSM should be extended in other municipalities
throughout the central Visayas region and the rest of the
country. The achieved methodology in this study is of great
importance to decision makers at municipal, provincial,
and regional scale for a very valuable outcome in achieving
a more comprehensive land use plan since the generated
results are useful for watershed management particularly
for ecological, hydrological, and crop suitability modeling.
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